
NASA/TM-2003-212441

Structured Uncertainty Bound Determination
From Data for Control and Performance
Validation

Kyong B. Lim
Langley Research Center, Hampton, Virginia

August 2003



The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical
Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA’s scientific and technical information.
The NASA STI Program Office provides access
to the NASA STI Database, the
largest collection of aeronautical and space
science STI in the world. The Program Office is
also NASA’s institutional mechanism for
disseminating the results of its research and
development activities. These results are
published by NASA in the NASA STI Report
Series, which includes the following report
types:

• TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive data
or theoretical analysis. Includes compilations
of significant scientific and technical data
and information deemed
to be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less stringent
limitations on manuscript
length and extent of graphic
presentations.

• TECHNICAL MEMORANDUM.
Scientific and technical findings that are
preliminary or of specialized interest,
e.g., quick release reports, working
papers, and bibliographies that contain
minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientific and
technical findings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION.
Collected papers from scientific and
technical conferences, symposia,

seminars, or other meetings sponsored or
co-sponsored by NASA.

• SPECIAL PUBLICATION. Scientific,
technical, or historical information from
NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

• TECHNICAL TRANSLATION. English-
language translations of foreign scientific and
technical material pertinent to NASA’s
mission.

Specialized services that complement the STI
Program Office’s diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing
research results. . . even providing videos.

For more information about the NASA STI
Program Office, see the following:

• Access the NASA STI Program Home Page
at http://www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621–0134

• Phone the NASA STI Help Desk at (301)
621–0390

• Write to:
NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076–1320



NASA/TM-2003-212441

Structured Uncertainty Bound Determination
From Data for Control and Performance
Validation

Kyong B. Lim
Langley Research Center, Hampton, Virginia

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2003



Acknowledgment

Most of the simulation and experiment on the Ducted fan and the basic UBID toolbox development has been
carried out while the author was visiting the Control and Dynamical Systems group at California Institute of
Technology under an Intergovernmental Personnel Act between California Institute of Technology and NASA
Langley Research Center. The gracious support by the host, Professor John Doyle, is greatly appreciated,
and Professor Richard Murray for access to the Ducted fan testbed. The author would also like to thank Dr.
David Bayard of Jet Propulsion Laboratory for the advice offered concerning closed loop system identification,
Marc Trotoux for conducting many of the experiments and simulations on the Ducted fan, and his colleagues
Dr. David Cox for his help during the final toolbox development phase and Dr. Daniel Moerder for the
sustained moral support, both at NASA Langley Research Center.

Available from:

NASA Center for AeroSpace Information (CASI) National Technical Information Service (NTIS)
7121 Standard Drive 5285 Port Royal Road
Hanover, MD 21076–1320 Springfield, VA 22161–2171
(301) 621–0390 (703) 605–6000



Contents

1 Motivation 1

1.1 Robust control theory, a promise . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Robustness dependence on uncertainty model . . . . . . . . . . . . . . . . . 2

2 Structured uncertainty bound determination from data 4

2.1 Assumptions on signals and systems . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Model of physical system and signals . . . . . . . . . . . . . . . . . . 4

2.1.2 Model validation using time-limited data . . . . . . . . . . . . . . . . 5

2.1.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Model validation framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 3-Step Approach to model validation and parameterization . . . . . . . . . . 13

2.4 Validation as a feasibility problem . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Optimizing for smallest scaled set . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Convex model validation problems . . . . . . . . . . . . . . . . . . . . . . . . 17

2.7 Smallest unmodeled dynamics subject to parametric uncertainties . . . . . . 18

2.8 Unknown but bounded exogenous signals . . . . . . . . . . . . . . . . . . . . 18

2.9 Performance validation using uncertainty model . . . . . . . . . . . . . . . . 19

3 Uncertainty Bound Identification (UBID) Toolbox 21

3.1 Prerequisites for UBID Toolbox Version 0.1 . . . . . . . . . . . . . . . . . . 21

3.2 Summary of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Command Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 blkd2x2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.2 congrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.3 form sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4 fungrad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.5 mnmvcl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.6 noise allow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.7 ovbndunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.8 pinv frd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.9 sseigunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.10 svd frd . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

iii



3.3.11 ubid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.12 ubid lmi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.13 ubid uncstr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.14 weightunc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Application Example 1: Uncertainty bounds of a large flexible structure 39

4.1 Control-Structure-Interaction Evolutionary Model . . . . . . . . . . . . . . . 39

4.2 Nominal model and uncertainty structure . . . . . . . . . . . . . . . . . . . . 40

4.3 Smallest unmodeled dynamics for model validation . . . . . . . . . . . . . . 42

4.3.1 Smallest additive uncertainty . . . . . . . . . . . . . . . . . . . . . . 46

4.3.2 Smallest additive uncertainty with eigenvalue uncertainty (.001) al-
lowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Smallest additive uncertainty with eigenvalue uncertainty (.002) al-
lowance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Smallest additive uncertainty with uncertain mode 3 only . . . . . . . 59

5 Application Example 2: Performance validation of a ducted fan 60

5.1 Caltech Ducted Fan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Nominal model and uncertainty structure . . . . . . . . . . . . . . . . . . . . 61

5.2.1 Analytical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Identified models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.3 Comparison of analytical and identified models . . . . . . . . . . . . 62

5.2.4 Equivalent output noise model . . . . . . . . . . . . . . . . . . . . . . 63

5.2.5 Uncertainty structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Smallest unmodeled dynamics for model validation . . . . . . . . . . . . . . 66

5.4 Performance validation analysis . . . . . . . . . . . . . . . . . . . . . . . . . 70

A Ducted Fan in level flight 79

A.1 Linearized, unstable model about trim . . . . . . . . . . . . . . . . . . . . . 81

A.2 Truth plant model and controller for simulation . . . . . . . . . . . . . . . . 82

A.3 Comparison of analytical model response to measurement . . . . . . . . . . . 83

A.4 Identified models from simulated data . . . . . . . . . . . . . . . . . . . . . . 87

A.4.1 System identification algorithm . . . . . . . . . . . . . . . . . . . . . 87

A.4.2 Identified models of (I −KP )−1 from simulated data . . . . . . . . . 89

iv



A.4.3 Identified models of (I − PK)−1P from simulated data . . . . . . . . 90

A.4.4 Summary of simulation results . . . . . . . . . . . . . . . . . . . . . . 91

A.5 Identified models from experimental data . . . . . . . . . . . . . . . . . . . . 96

A.5.1 Identified model of (I −KP )−1 . . . . . . . . . . . . . . . . . . . . . 96

A.5.2 Identifed model of (I − PK)−1P . . . . . . . . . . . . . . . . . . . . 96

A.5.3 Prediction error and summary . . . . . . . . . . . . . . . . . . . . . . 96

A.6 Output noise model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

A.6.1 Noise model from simulated data . . . . . . . . . . . . . . . . . . . . 105

A.6.2 Noise model from experimental data . . . . . . . . . . . . . . . . . . 106

A.7 Uncertainty models from simulated data . . . . . . . . . . . . . . . . . . . . 109

A.7.1 Simulated data and case studies . . . . . . . . . . . . . . . . . . . . . 110

A.7.2 Perfect nominal model . . . . . . . . . . . . . . . . . . . . . . . . . . 112

A.7.3 Nominal model with correct uncertainty structure . . . . . . . . . . . 112

A.7.4 Nominal model with incorrect uncertainty structure . . . . . . . . . . 113

A.7.5 Identified nominal models . . . . . . . . . . . . . . . . . . . . . . . . 114

A.7.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

v



Abstract

This report attempts to document the broad scope of issues that must be satisfactorily resolved
before one can expect to methodically obtain, with a reasonable confidence, a near-optimal robust
closed loop performance in physical applications. These include elements of signal processing,
noise identification, system identification, model validation, and uncertainty modeling. Based
on a recently developed methodology involving a parameterization of all model validating uncer-
tainty sets for a given LFT structure and noise allowance, a new software, Uncertainty Bound
Identification (UBID) toolbox, which conveniently executes model validation tests and determine
uncertainty bounds from data, has been designed and is currently available. This toolbox also
serves to benchmark the current state-of-the-art in uncertainty bound determination and in turn
facilitate benchmarking of robust control technology. It is hoped that a convenient new toolbox
will encourage extensive application of this baseline methodology and toolbox so that researchers
can build on it to make robust control a truly useful tool. To help clarify the methodology and
use of the new software, two tutorial examples are provided. The first involves the uncertainty
characterization of a flexible structure dynamics, and the second example involves a closed loop
performance validation of a ducted fan based on an uncertainty bound from data. These examples
also help describe the many factors and assumptions that determine the degree of success in ap-
plying robust control theory to practical problems. The results demonstrate the highly non-unique
nature of model validating set of uncertainties, which require only matching predicted to measured
input and output data, and hence almost any internal model structure is possible. The results
on the effects of erroneous or non-existent uncertainty structure indicates that model validation
conditions satisfy easily but often gives unpredictable uncertainty norm bounds, due to differing
uncertainty structures.

1 Motivation

1.1 Robust control theory, a promise

In robust control theory of the µ variety (for example, see [1], [2]), uncertainties in a math-
ematical model representation of a physical system are addressed by considering a bounded
set of models. A widely accepted representation of a bounded set of input-output models
for general, multivariable, linear, time-invariant (LTI) system is the linear fractional trans-
formation (LFT) representation(

e

y

)
= Fu(Po(W ),∆u)

(
r

u

)
, ∆W := W∆u ∈ DW

Figure 1 shows the standard LFT connections of an uncertainty model, ∆u, augmented
nominal plant, Po, and controller, K. The component uncertainty sizes are denoted by the
block-diagonal uncertainty weight matrix, W , which corresponds in structure to the unity
norm-bounded block-diagonal structured uncertainty set

DB := {∆u := {diag[δ1In1 , . . . , δrInr ,∆1, . . . ,∆F ] : δi, ∆j ∈ RH∞}, ‖∆u‖∞ ≤ 1}
With the above notions of LFT’s and uncertainty structure, a set of plant models can then
be represented as

P∆ := {Fu(Po(W ),∆u), ∆u ∈ DB}
and the notion of robustness can be defined such that if a characteristic holds for every plant
P ∈ P∆, then controller K is said to be “robust”. As an example, “robust performance”
characteristics include both internal stability and a minimum performance level. The amaz-
ing thing about µ robustness theory is that nominal performance (NP), robust stability (RS),
and robust performance (RP) requirements for the general LFT system shown in Figure 1

1



K

∆u∆u

P(W)o

lG := F(P(W),K)o

G re r e

Figure 1: Standard LFT uncertainty-plant-controller representation.

can be succinctly quantified by the following µ conditions:

NP ⇔ NS + ‖G22‖∞ < 1 ⇔ σ̄(G22) = µ∆p(G22) < 1, ∀ω
RS ⇔ NS + Fu(G,∆) stable,∀∆ ∈ B∆ ⇔ µ∆u(G11(W )) < 1, ∀ω
RP ⇔ RS + ‖Fu(G,∆)‖∞ < 1,∀∆ ∈ B∆ ⇔ µ∆(G(W )) < 1, ∀ω

where

µ∆(G) :=
1

min∆∈D {σ̄(∆) | det(I −G∆) = 0}
and

∆ :=

[
∆u

∆p

]
∈ D, ∆p unstructured, complex, performance block

The point here is that robust control theory is very elegent and computationally reliable [3]
but depends heavy on the uncertainty structure and weight, W . Notice that the assumed
uncertainty structure and weight is implicit in the augmented nominal plant and its LFT
interconnectons.

1.2 Robustness dependence on uncertainty model

Even after almost two decades of well established theory, there is a persistent gap across
robust control theory and technology. This means that its usefulness to practical systems is
limited and is painfully evident from simulation studies of simple toy models to applications
on more realistic systems, some of which is illustrated in this study. Figure 2 hints at why
this may be so - a priori knowledge of a physical application is imperfect and there are
limitations to measurements.1

Interestingly the exploitation of a given uncertainty model, with explicit assumptions on
the system structure, is the key advantage in robust control as well as its main predicament
in applications. With a given uncertainty model, robustness analysis can address what-if
questions such as worst case response which can be used as a means to tradeoff system
robustness with performance. Furthermore, with a given uncertainty model, robust control
synthesis can build-in robustness with respect to this uncertainty model. In the end however,
the physical significance of these analysis and synthesis results depends on the relevance of
the given uncertianty model with respect to the physical system in question.

1A plausible historical explanation for this state appears to be that while feedback control was originally motivated
by physical applications, control theory apparently evolved in its own sphere very often without the distractions caused
by physical realities and a myriad of peculiar characteristics in physical systems. Modeling is not the primary concern
of control systems theorists, which makes new control theories more and more difficult to apply.

2
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A priori knowledge of the physical application
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APPLICATION
PHYSICAL
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Closed loop
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performance

First Principle
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CONTROL LAW
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Model ValidationUNCERTAINTY

Wind tunnel data
Inertia properties

Figure 2: Factors contributing to robust control law performance in real problems.

These reasons motivate the goal and the particular approach reported here. Namely, we
seek to improve the usefulness of robust control by constructing uncertainty model bounds
based on both a priori information and test data, the latter which is usually not used due
to the lack of a sensible methodology.
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2 Structured uncertainty bound determination from data

2.1 Assumptions on signals and systems

In dealing with signals for model validation, sufficient care must be given to prevent inad-
vertent errors. For example, we may not necessarily want to apply tapered time windows for
input and output signals to improve their spectral spreading and leakage as commonly done
in spectral analysis, at the expense of spectral distortions in the predicted output. In gen-
eral, we have to avoid nonperiodicity in the signals because it can lead to significant errors
when used in predicting output DFT’s, as described in the following subsections. Hence,
implementing experiments that produce periodicity in the input and output signals appear
necessary in a proper application of model validation tests based on matching predicted
output spectra to measurements based on time-limited samples. However, if a periodic time
sample cannot be attained, the nonperidicity induced errors can be mitigated to some degree
by applying tapered time windows with a nominal level of spectral distortions. In addition,
to develop theory with some level of rigor, simplifying assumptions on the system are also
required, although not more limiting than µ theory in robust control.

2.1.1 Model of physical system and signals

Consider a given physical system modeled as a linear transfer function matrix, G, with inputs
and outputs denoted by u and y respectively and driven by unknown exogenous disturbances
denoted by d as shown in Figure 3. Our interest is of course the model validation (or
invalidation) of the system model, G, using a judicious set of inputs and measured outputs
from an unknown “true” plant model, Gtrue . Assume discrete time signals so that hereon we

unknown initial conditions

ΣΣ

Window
Time

Window
Time

Window
Time

Physical System

−

k1 k2ko k1 k2ko
0 k

y[m]

time(m)
0

d[m]

k

u[m]

reference time with
start of test input end of test input

G[z]

H[z]

exogenous disturbanceunknown

� � � � �� � � � � � � � � � �� � � � � �

u[m]y[m]

d[m]

U[z]*W[z]Y[z]*W[z]

~

~

~

Figure 3: Schematic of signals collected for model validation

4



denote, for example, the input u[m] := u(t = mτ) to mean the input at time t = mτ where
τ denotes the sampling time and m is an integer index denoting time. While the unknown
exogenous disturbance signals, d, are everlasting, the test input, u, starts at time ko and
ends at k1. The interval from k1 to k2 marks the transition from the end of forced response
to beginning of zero input steady-state response. For more details on signals and systems,
see for example [4].

Suppose the system is modeled as an n-th order state-space, linear, discrete time-invariant,
and asymptotically stable so that its j-th eigenvalue denoted by γj satisfies

Assumption 1: |γj| < 1, j = 1, . . . , n

with its output at time m := ko + k, given by

y[m] =
n∑
j=1

cjγ
m
j︸ ︷︷ ︸

zero input response

+u[m] ∗ g[m] + d[m] ∗ h[m] (1)

where {cj, j = 1, . . . , n} denote constants dependent on generally unknown initial conditions
at time m = 0, “∗” denotes convolution operation, and g[m], h[m] denote pulse responses
of models for the physical system and noise filter respectively. Assuming these models are
causal,

Assumption 2: g[m] = 0, h[m] = 0, ∀m < 0

and the convolution terms in equation 1 reduce to, for example

u[m] ∗ g[m] :=
∞∑

l=−∞
u[l]g[m− l] =

m∑
l=−∞

u[l]g[m− l] (2)

To deal with the unknown initial conditions, we assume that the corresponding reference
time for the asymptotically stable system is sufficiently far back relative to time ko such that
its zero input response component at timem ≥ ko is insignificant. Specifically, given an ε > 0,
we assume that there exists a positive integer k such that if ko ≥ k, then |∑n

j=1 cjγ
m
j | < ε,

∀m ≥ ko. Simply put,

Assumption 3:
n∑
j=1

cjγ
m
j ≈ 0, m ≥ ko

For convenience, the reference time point is shifted forward by ko and hereon for simplicity,
with assumptions 1 to 3, the output equation 1 is reduced to

y[k] = u[k] ∗ g[k] + d[k] ∗ h[k], k ≥ 0 (3)

2.1.2 Model validation using time-limited data

For model validation in the frequency domain, based on input and output data sequence
which are of N -points duration (corresponding to a rectangular time window in Figure 3)

{y}N = {y[0], . . . , y[N − 1]}, {u}N = {u[0], . . . , u[N − 1]}

5



consider the z-transform of equation 3

Y [z] = G[z]U [z] +H[z]D[z] (4)

where

Y [z] :=
∞∑

k=−∞
y[k]z−k

and similarly for U [z] and D[z] while G[z] and H[z] denote transfer function matrices whose
frequency response functions are defined on z = eiωτ . With time-limited data, we cannot
compute the necessary z-transforms in equation 4 which motivates us to rewrite as

Y [z] =
−1∑

k=−∞
y[k]z−k +

N−1∑
k=0

y[k]z−k +
∞∑
k=N

y[k]z−k

= G[z]

( −1∑
k=−∞

u[k]z−k +
N−1∑
k=0

u[k]z−k +
∞∑
k=N

u[k]z−k
)

+H[z]D[z]

The above relation rewritten only at discrete set of frequency points evenly spaced on the
unit circle in the z-plane is

YN [zr] = G[zr]UN [zr] +RN [zr] +
1√
N
H[zr]D[zr], zr = ei

2π
N
r, r = 0, . . . , N − 1 (5)

where Discrete Fourier Transforms of samples {y}N and {u}N are given by2

YN [zr] :=
1√
N

N−1∑
k=0

y[k]z−kr , UN [zr] :=
1√
N

N−1∑
k=0

u[k]z−kr

and the mostly unknown residual

RN [zr] :=
1√
N

{
−

−1∑
k=−∞

y[k]z−kr −
∞∑
k=N

y[k]z−kr +G[zr]

( −1∑
k=−∞

u[k]z−kr +
∞∑
k=N

u[k]z−kr

)}

is due to time-limited input-output data. Ignoring for the moment the effect of unknown
exogenous disturbances and noise, 1√

N
H[zr]D[zr], an upper bound on the residual can be

written in terms of the worst case input signal and a measure of system gain as [5]

|RN [zr]| ≤ 2√
N
‖u‖∞

∞∑
k=0

k|g[k]|

Since the DFT of an N -point sample is equivalent to the Fourier Transform of the corre-
sponding everlasting N -periodic signal, this means that the residue consists of the difference
between an N -periodic output constructed from measured output, and the calculated output
from a given discrete-time filter driven by an N -periodic input constructed from measured
input. Of course without a priori knowledge of the given measured signals, there is no reason

2 In MATLAB-Signal Processing Toolbox, the scale factor 1
N

is used in the DFT calculation (rather than 1√
N

implied by our DFT and inverse DFT definitions) and a unity scale factor in the inverse DFT expression.
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to assume that the constructed N -periodic sample is representative of a nonexistent peri-
odic input-output response of the physical system. Also, this residual holds for a generally
unavailable “true” model (the given discrete-time filter) which produced the sample time
records, hence, additional model error terms must be included subsequently for a model
validation test.

If the measured input and output signals are truly N -periodic, then

Assumption 4: RN [zr] = 0,∀r

A time-limited signal, for instance {y}N , can be seen as the product of everlasting time
signals, y, with a rectangular window function, w of width N , i.e.

yN [k] := y[k]w[k], k = −∞, . . . ,∞; YN [z] := Y [z] ∗W [z]

where {yN} := {. . . , 0, {y}N , 0, . . . , } is the everlasting time signal which contains the time-
limited signal. In spectral estimation problems tapered time windows are often used to
mitigate spectral spreading and leakage caused by the rectangular window function which
can be seen as a convolution with a sinc spectrum. Basically, the tapering works because
the signal spectra in some bandwidth of interest is minimally distorted unlike at other
frequencies.

In contrast to the spectral estimation/analysis problem, we are interested in accurately
characterizing the predicted output error defined by (see Figure 3)

E[zr] := ỸN [zr] − YN [zr], r = 0, . . . , N − 1 (6)

where

ỸN [zr] := Z(ỹ[k]w[k]) = Ỹ [zr] ∗W [zr] = (G̃[zr]U [zr] + Noise) ∗W [zr]

YN [zr] := G[zr]Z(u[k]w[k]) +
1√
N
H[zr]DN [zr] = G[zr](U [zr] ∗W [zr]) +

1√
N
H[zr]DN [zr]

The term ỸN [zr] denotes the z-transform, denoted by Z(·), of windowed measured outputs
evaluated at zr while the term YN [zk] denotes the predicted outputs based on assumption
4, i.e. RN [zr] = 0 in equation 5. The predicted output error given by equation (6) with
N -periodic assumption reduces to

E[zr] = (G̃[zr]U [zr]) ∗W [zr] −G[zr](U [zr] ∗W [zr]) + Noise Terms, r = 0, . . . , N − 1 (7)

so that even for the true model, i.e., G[z] = G̃[z], and excluding noise effects, the above
predicted output error will not be zero; only a rectangular window will indicate a zero
predicted output error for the true model. Intuitively, it matters whether the time windowing
is applied at the input to the plant or at its output. This means that tapered windows
should be used sparingly in model validation for preconditioning signals (for example to
force periodicity or even mitigate aliasing).

In the context of conducting model validation experiments, we can try to satisfy the
N -periodic assumption by either (i) literally implementing an N -periodic test input or (ii)
implementing a test input sequence that will produce a rest-to-rest N -point sample, for
instance by beginning an N -point sample such that the zero input response from earlier time
is negligible and by including at the tail end of the sample the decaying output response
(due to zero input) until steady state. In either case, the experiment must be designed such
as to allow a certain prescribed periodicity in a measurement sample, without using tapered
windows. The effects of unknown exogenous signal terms are difficult to account for and is
dealt with by prescribing noise/disturbance allowances in the periodogram of the appropriate
signals based on a priori knowledge of say their estimated spectra.

7



2.1.3 Example

In this section we illustrate possible errors in the predicted output even if the model to be
validated is the true model which generated the signals. Suppose the true system is a lightly-
damped second-order discrete time plant defined by G[z] = zp2sys( [−1,−1], [.9+j∗ .4, .9−
j∗ .4], 1) with sampling time τ = .1 sec. Figure 4 shows the Bode plot of the true plant and
simulated input and output time records imbedded with a low level of additive output noise.
The test input chosen is simply a random number sequence having a uniform distribution,
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Figure 4: Frequency response of G[z] (left), simulated input/output data with low noise (right).

zero-mean with unit standard deviation generated by inp = [zeros(1000, 1); randn(1000, 1);
zeros(1000, 1); randn(1000, 1); zeros(1000, 1)], independently for each case. Similarly, the
assumed output noise considered are generated by uniformly random time sequences having
zero mean and with two different levels of standard deviations, σ = 10−4 to represent low
noise case and σ = 10−1 for high noise cases. Starting at rest, it is assumed that the input
is periodic over exactly 2000 points (or 200 seconds) of which the latter half consists of zero
input to let the system decay to near zero state before the next period begins. Of course
in principle, it does not matter where the 2000 points begins and ends for periodicity but it
must be exactly 2000 points, else, the errors can be huge. For this reason, in applications,
it helps to select the end timepoints of a sample such that the measured output do not end
abruptly at both ends.

Table 1 show cases under which the predicted output errors are computed with variations
in output noise levels, signal periodicity, and window function. In all cases, the true model,
which was used in generating the simulated signals, is used in computing the predicted output
errors with only additive output noise - obviously to examine potential hazards without even
worrying about model or parametric errors.

The top two figures in Figure 5 shows the input and output time records and the cor-
responding predicted output error for low noise, periodic Cases LPR and LPH. The only
difference between these two cases is that the latter case uses a tapered time window. In
both cases the time samples are chosen to be perfectly periodic over 2000 points, starting
from point 1001 and ending with point 3000. A sufficient time interval of 100 seconds with
zero input occurs at the latter half of these samples to satisfy periodicity with negligible
zero input response from the past. The third subfigure for each case show the spectra mag-
nitudes |YN [zr]| (solid line), |G[zr]UN [zr]| (dash-dot line), |YN [zr] −G[zr]UN [zr]| (dash line),
and |DN [zr]| (dotted line) while the noise filter H[zr] is assumed to be unity. In all cases
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Case Noise Level, σ Periodicity(point range) Time Window
LPR 10−4 Periodic(1001-3000) Rectangular
LPH 10−4 Periodic(1001-3000) Hanning
LNR 10−4 Non-periodic(1001-3700) Rectangular
LNH 10−4 Non-periodic(1001-3700) Hanning
HPR 10−1 Periodic(1001-3000) Rectangular
HPH 10−1 Periodic(1001-3000) Hanning
HNR 10−1 Non-periodic(1001-3700) Rectangular
HNH 10−1 Non-periodic(1001-3700) Hanning

Table 1: Cases simulated for predicted output errors.

considered, the spectra magnitudes |YN [zr]| and |G[zr]UN [zr]| appears to overlap in the log-
arithmic scaled figures and yet their corresponding predicted output errors (dash line) are
not insignificant.

The spectra magnitude plots for Case LPR shows that the predicted output error is to-
tally due the output noise (the dash and the dotted lines overlap). However, if the periodic
samples are Hanning windowed as in Case LPH, the predicted output error increases signif-
icantly relative to the output noise spectra floor. Furthermore, as indicated in the previous
figures the frequency shape of this increase is dependent on the plant transfer function, i.e.
dependent on the frequency convolution of Hanning function with plant transfer function.

The bottom two subfigures in Figure 5 corresponds to Cases LNR and LNH which illus-
trates the consequence of violating periodicity assumptions in the signals. This particular
nonperiodic time samples start from point 1001 and ends at point 3700. The predicted
output error for Case LNR is due to the nonperiodicity of the signals used in computing
the DFT’s and is significantly larger than the predicted output error in Case LPH which is
primarily due to tapered window at the input for a periodic signal. With the application of
the Hanning window to the nonperiodic signals in Case LNH, the predicted output error is
significantly reduced when compared to the rectangular windowed nonperiodic Case LNR,
but still the error peak near 4 rad/sec did not improve. Interestingly, the predicted output
error level in Case LNH is comparable to Case LPH, whose errors are due to the generally
nonequivalent frequency convolution at the input and the output for a general window func-
tion. This is likely due to the fact that applying the Hanning window on the nonperiodic
signals in Case LNH makes it somewhat periodic, but still the error due to nonequivalence
of the frequency convolution at the input and output remains, similar to Case LPH.

To illustrate the effect of high output noise level, Figure 6 show Cases HPR, HPH, HNR,
and HNH. Similar to the ideal Case LPR but with a higher output noise floor, Case HPR
shows that the predicted output error equals the increased noise floor. The predicted output
errors in Case HPH shows the combined effects of the input/output Hanning windowing
(comparable to Case LPH) and the higher noise floor (comparable to Case HPR) so that
at low frequencies, the noise floor dominates the predicted output error while near plant
resonance the Hanning window induced frequency convolution error dominates. The effects
of using nonperiodic signals in Cases HNR and HNH is analogous to the low noise cases,
namely, a large predicted output error is incurred by the nonperiodicity (Case HNR) and
is subsequently improved by Hanning windowing (Case HNH) - of course subject to the
limitation imposed by the higher output noise floor.

In summary, this example demonstrates that even with no model errors, significant errors
in the predicted output can result due to the effects of nonperiodicity, windowing, and noise.
If the signals are known to be nearly periodic, rectangular windowing appears to reduce the
predicted output errors, however with nonperiodic signals including any signals with high
known levels of noise, as in the Ducted fan example to be discussed later, tapered windowing
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Figure 5: Cases LPR (top left), LPH (top right), LNR (bottom left), LNH (bottom right): In-
put/output records and predicted output error.

appears more suitable. Of course in actual applications, the added complication of model
errors is inevitable. So, in model validation for robust control, we utilize the uncertainty
structure and plant set associated with robust control to match the measured output with
any one predicted output amongst a given set of models.
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Figure 6: Cases HPR (top left), HPH (top right), HNR (bottom left), HNH (bottom right): In-
put/output records and predicted output error.
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2.2 Model validation framework

We begin with making Assumptions 1 to 4 to restrict the class of signals and systems under
consideration. Motivated by multivariable robust control theory (see for example [1]), we also
limit the model structure to those that can be represented by LFT connections. The basic
model validation question involves determining whether a particular plant model, belonging
to a given set of plant models, and a particular exogenous signal, belonging to an unknown
but bounded set of exogenous signals, could have produced a given pair of measured input and
output signals. Going beyond this basic question, we also show how reasonable uncertainty
bounds can be constructed for use in robust control or performance validation.

Figure 7 shows the basic LFT framework and its canonical form for model validation.
Notice that for a closed loop system model validation where r and K are assumed known,

Physical System

exogenous disturbanceunknown

Σ

Σ
P P P
P P P

11 12 13

21 22 23Σ

ν

∼

Σ

�∆

_ ∼

ε

∼
{ε

ν}β =
Σ

�∆
η ξ

Figure 7: Model validation framework and canonical form.

eu := ũ − u = 0 if ey = 0 so that only the output error need to be considered. Given mea-
surements of the output, y, command input, r, an augmented nominal plant and disturbance
filter, P , controller, K, output noise filter, V , and a set of bounded structured uncertainty,
DW , the set of plant (robust control design models)

PW := {Fu(P,∆),∆ ∈ DW}
is said to be a model validating set if at each frequency (ωk = 2πk

τN
, k = 0, . . . , N−1) it contains

an uncertainty model ∆ ∈ DW such that there exists exogenous disturbance signals, ε and
ν with ‖β‖ ≤ 1 for which

y = Fu(G(P,K, V ),∆)




ε
ν
r




and

D := {∆ ∈ Cm×n : ∆ = diag(δ1Im1 , . . . , δrImr ,∆r+1, . . . ,∆τ ), δi ∈ Fi,∆k ∈ Cmk×nk}
W := diag (w1I1, . . . , wτIτ )

DW := {∆ ∈ D : ∆ = W∆B}
∆B := {∆ ∈ D : σ̄(∆) ≤ 1}

With Assumptions 1 to 4, the set of signals y, r, η, ν, are viewed as the DFT’s of their re-
spective time-limited samples while systems, P , K, V , G, W , are viewed as transfer function
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matrices evaluated at the same uniformly spaced frequencies up to Nyquist frequency. The
symbol Fu denotes an upper LFT structure and G(P,K, V ) denotes the augmented closed
loop transfer function matrix containing both noise and disturbance filters. Notice that we
do not require ∆ ∈ RH∞ so that stability and causality of the perturbation are not required,
only that it is norm bounded. The terms δi, i = 1, . . . , r, denote repeated scalar uncertainties
which in general can depend on frequency in contrast to parametric uncertainties which are
implicitly assumed to be unknown constants.

This question was first posed in [7] and they have shown that the validation test can be
formulated analogous to a skewed-µ or alternately as a quadratic optimization problem. For
the “most commonly applied cases: additive and input or output multiplicative” [8] it has
been shown (and in time domain [9]) that the validation test takes the form of a convex
feasibility problem when the fictitious signal η do not depend on ξ. More recently, [10] has
shown that by choosing a plant uncertainty model based on coprime factorizations of the
nominal plant and known controller, all closed loop transfer functions can be made affine in
the coprime factor uncertainties so that the convexity of the validation test can be preserved
through enforcing G(P,K, V )11 = 0. In dealing with closed loop validation in [10], the noise
model enters as an additive output outside the loop and hence only G11 is relevant. On the
other hand, in the work reported in [9], an open loop model validation problem with additive
output noise is considered so that only P11 is relevant. However, it is not clear what the level
of conservatism is on this particular form of plant uncertainty structure especially since no
additional user specified uncertainty structure can be accomodated nor is necessary.

A key problem arises if one wishes to test a more general uncertainty structure for model
validation beyond the “most commonly applied cases: additive and input or output multi-
plicative” (as mentioned in [8]), namely, the loss of convexity in the feasibility problem. This
means that from a numerical implementation standpoint, the validation test is effectively a
sufficient condition. Furthermore, if the validation test is passed for a particular plant set,
there exists an infinity of other sets which will also be validating, irrespective of its convex-
ity. In our view, this non-uniqueness diminishes the significance of a validation result for a
particular set.

For these reasons, we take an alternate view of the model validation problem, as described
in more detail in the next section. Instead of trying to validate a specific set with respect
to given data by asking “Is DW model (in)validating?” we ask instead “Does a model
validating set DW exist?” The former question is a test on a specific uncertainty set resulting
in a positive or negative answer while the latter question is a test to determine whether
some uncertainty set with the given LFT structure exists that can satisfy model validation
conditions. The latter question is of course a necessary condition to the former and it turns
out to be much simpler to test. Furthermore, if a finite size model validating set DW exist,
then it turns out that all model validating sets having the same LFT uncertainty structure
can be readily parameterized [6].

2.3 3-Step Approach to model validation and parameterization

A new approach breaks up the model validation question into 3 parts:3

1. Does a pair of signals (ξ, β) where ‖β‖ ≤ 1 exists such that ey = 0 ?

2. Parameterize the set of signals

Sφ,ψ := {[ξ(φ, ψ), β(φ, ψ), η(φ, ψ)] : ey = 0, φ ∈ Φ, ψ ∈ Ψ}
3For more details see [6]
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3. Does a ∆ ∈ D exists such that ξ = ∆η for some signal (ξ, η(ξ, β)) ∈ Sφ,ψ ?

Figure 8 illustrates the question posed in Step 1. Such a pair of signals exists if and only if

∼
ε
ν{ }Σ

ξ
β =

η

Figure 8: Does (ξ, β) exists, where ‖β‖ ≤ 1, such that ey = 0 ?

eoy ∈ Im(M)
‖TH2 (M+)βe

o
y‖ ≤ 1

}
∀ωk (8)

where the constant matrices are given by

eoy := ymeas −G23r

M := [G21, G22]
Im(NM) = Ker(M)

T2 := Im((NM)ν)
⊥

Notice that M is a crucial matrix which captures the uncertainty freedoms to be used for
model validation. This test involves only a constant matrix check at discrete frequency
points of interest in contrast to a (non)convex feasibility problem. If the above necessary
condition cannot be satisfied, this means that no matter how large the uncertainty radii W
(imbedded in G) is, the model is invalidated because either the a priori uncertainty structure
is too restrictive or the noise allowance is too small. Hence to proceed in trying to construct
a model validating set, one has to improve the nominal plant model, P , and/or modify
the uncertainty structure D to increase its richness, and/or increase the noise allowance by
modifying the noise filter model V .

If the above constant matrix test passes, then one can proceed to Step 2 and parameterize
the set of signals

Sφ,ψ := {[ξ(φ, ψ), η(φ, ψ), β(φ, ψ)] : ey = 0, φ ∈ Φ, ψ ∈ Ψ}
where all feasible triples (ξ, ε, ν) are given by(

ξ

β

)
=

(
ξo
βo

)
+ Ω

(
φ

ψ

)
where ψ is arbitrary and φ satisfies

‖φ‖ ≤ bo :=
√

1 − ‖TH2 (M+)βeoy‖2 (9)

and

Ω := NMU

[
Σ−1

1 0
0 Inψ

]
(10)(

ξo
βo

)
:=

[
M+ −NM((NM)β)

+(M+)β
]
eoy (11)

(NM)β :=
[
T1 T2

] [ Σ1 0
0 0

]
UH (12)
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Figure 9 illustrates the final step of the existence test, which is to check whether a ∆ ∈ D
exists such that ξ = ∆η for some signal pair (ξ, η(ξ, β)) ∈ Sφ,ψ where η = G11ξ + G12β +
G13r. It turns out that this part of the existence test is satisfied if and only if there exists

∆ ξ(ϕ,ψ)η(ϕ,ψ)

Figure 9: Final step of existence test

(ξ, β) ∈ Sφ,ψ such that ξi = 0 or ηi(ξ, β) �= 0, ∀i, i.e. D-realizable, and for each repeated
uncertainty block, (ξi, ηi(ξ, β)) are collinear. For the special class of uncertainty structure
with no repeated uncertainties, i.e. r = 0 but not requiring G(P,K, V )11 = 0, with a
satisfaction of the necessary conditions for existence in equation 8, it is almost certain that
there exists (ξ, β) ∈ Sφ,ψ such that ηi(ξ, β) �= 0,∀i. This means that for this important
special class of uncertainty structure, the necessary conditions in equation 8 are actually
necessary and almost sufficient for a model validating set DW to exist.

If a model validating set DW exists, then all model validating sets of plants are given by

PWφψ := {Fu(P,∆),∆ ∈ DW}
where ψ ∈ Cnψ , φ ∈ Cnφ , ‖φ‖ ≤ bo, and W := diag(w1In1 , . . . , wτInτ ) is any matrix satisfying

‖ξi(φ, ψ)‖
‖ηi(φ, ψ)‖ ≤ |wi|, i = 1, . . . , τ

(ξ, η) is D-realizable and are parameterized by

ξi = ξo,i + Ωi

{
φ
ψ

}
(13)

ηi = ηo,i + [G11 G12]iΩ

{
φ
ψ

}
(14)

dist(Fi)(ξi, ηi) = 0, i = 1, . . . , r, and

ηo := [G11 G12]

{
ξo
βo

}
+G13r. (15)

It is intuitively pleasing to note that if model validating sets exists, they are highly non-
unique.

2.4 Validation as a feasibility problem

Using the previous parameterization, we re-examine the earlier question, “Is DW model
(in)validating?” Suppose a model validating set DW exists. Since all model validating sets
for the chosen uncertainty structure are given by the above parameterization, the original
question can be posed as follows:

Given W , at each frequency does a (φ, ψ), ‖φ‖ ≤ bo exists such that

‖ξi(φ, ψ)‖
‖ηi(φ, ψ)‖ ≤ |wi|, i = 1, . . . , τ (16)

where (ξ, η) is D-realizable and dist(Fi)(ξi, ηi) = 0, i = 1, . . . , r ?
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The D-realizable and collinearity conditions can be implicitly satisfied by the following form:

Given W , at each frequency does a (φ, ψ), ‖φ‖ ≤ bo exists such that

ξi(φ, ψ) − δiηi(φ, ψ) = 0, δi ∈ Fi

|δi| − |wi| ≤ 0

}
i = 1, . . . , r (17)

‖ξi(φ, ψ)‖2 − |wi|2‖ηi(φ, ψ)‖2 ≤ 0, i = r + 1, . . . , τ ? (18)

Although ξi and ηi are affine in φ and ψ as given in equations 13 and 14, the feasibility con-
ditions are in general nonconvex. Specifically, the collinearity requirement due to repeated
(and/or real) uncertainty involves a quadratic equality since δi is unknown equation 17 and
the norm inequalities for the nonrepeated uncertainties although quadratic involves a differ-
ence in norms (equation 18). Nevertheless, one is hopeful towards a workable methodology
if one observes from equations 17 and 18 that a feasible solution can be generated by first
focusing on finding a pair (φ, ψ) which satisfies the collinearity condition in equation 17 and
then easily selecting sufficiently large weights wi, i = 1, . . . , τ , to satisfy equations 17 and
18.

2.5 Optimizing for smallest scaled set

A useful set of model validating plants must be “small but not smaller”, i.e., it should not
be an unnecessarily large set of plants which will limit performance but it must contain
the “true” plant. Given a candidate set DW of uncertainty norm radii, W , we seek a
corresponding smallest scaled set DxW which is model validating. This question can be
posed by imbedding the previous feasibility problem in the following optimization:

min
φ,ψ,δ1,...,δr,x2

x2

subject to
ξi(φ, ψ) − δiηi(φ, ψ) = 0, δi ∈ Fi

|δi|2 − x2|wi|2 ≤ 0

}
i = 1, . . . , r (19)

‖ξi(φ, ψ)‖2 − x2|wi|2‖ηi(φ, ψ)‖2 ≤ 0, i = r + 1, . . . , τ (20)

‖φ‖2 ≤ b2o (21)

Although the above problem is not convex in general, the conditions involve polynomi-
nals in φ, ψ, δ1, . . . , δr, x

2 with are at most cubic order. The existence of a feasible point
(φ, ψ, δ1, . . . , δr, x

2) in the above optimization problem is equivalent to the existence of a
model validating set DxW . Of course when x < 1, the original candidate uncertainty set,
DW satisfies model validation conditions. Notice that if there are no repeated uncertainty
(r = 0), any choice of ψ and φ where ‖φ‖ ≤ bo will likely admit a model validating set
DxW , since a larger uncertainty radii, W will admit a feasible point. However, even without
repeated uncertainties, the constraints are in general not convex in φ and ψ and therefore
the numerical optimization task is likely nontrivial.

The important issue of how one would simultaneously choose apriori weights for paramet-
ric (wi, i = 1, . . . , r) and nonparametric (wi, i = r+1, . . . , τ) uncertainties to form candidate
uncertainty weight is beyond the scope of this work. Whatever is chosen in an application,
these candidate uncertainty weights should reflect the relative importance of the uncertainty
components by design, based on additional a priori information on the particular application.
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2.6 Convex model validation problems

For the special case when [G11, G12] = 0, ηi becomes independent of ξ and β (or equivalently
φ and ψ) so that the term ηi(φ, ψ) simplifies to a constant ηi = G13ir for given data and a
convex feasibility/optimization problem results. This means that in general, both the choice
of the LFT uncertainty structure and the way unknown exogenous signals affect the model
determines whether a convex problem arises. For this special case, the problem of finding a
smallest model validating unmodeled dynamics reduces to:

min
φ,ψ,δ1,...,δr,x2

x2

subject to
‖ξi(φ, ψ)‖2 − x2|wi|2‖G13ir‖2 ≤ 0, i = 1, . . . , τ

‖φ‖2 ≤ b2o
and since ξi(φ, ψ) is affine and the inequalities represent ordinary norm bounds, a feasible
set if it exists will be convex. For computation, we rewrite these as an optimization problem
involving a linear cost function subject to a set of linear matrix inequality constraints [11]:

min
z

cT z

subject to [
Qiz − ‖ξo,i‖2 sym

Siz I

]
> 0, i = 1, . . . , τ[

b2o sym
Lz I

]
> 0

where z := [Re(ψ); Im(ψ); Re(φ); Im(φ);x2] ∈ R2nψ+2nφ+1 and

c := [0(2nψ+2nφ); 1]
Qi := [−2Re(ξHo,iΩiA), |wi|2‖G13ir‖2]

Si :=

[[
Re(Ωi) −Im(Ωi)
Im(Ωi) Re(Ωi)

] [
Re(A)
Im(A)

]
, 0

]
L :=

[
02nφ×2nψ I2nφ 02nφ×1

]
A :=

[
0 0 Inφ jInφ
Inψ jInψ 0 0

]




(22)

In a recent study, [10] notes that even if a selected uncertainty structure in open loop is made
to satisfy [P11, P12] = 0 (see Figure 7), the presence of feedback can lead to [G11, G12] �= 0
resulting in a nonconvex feasibility test. In general, it can be observed that since η =
[G11, G12]

(
ξ
β

)
+G13r, [G11, G12] = 0, if and only if all of the following conditions hold:

1. each uncertainty block is not connected to the plant in a feedback,

2. uncertainty blocks are not connected in such a way that an output signal from one
block could influence another block,

3. all exogenous input signals do not influence any uncertainty block

These conditions are for open loop plants so that for systems with embedded feedback
controllers forming an augmented plant, some of the above conditions may not hold. Clearly
these conditions, which are sufficient conditions for convexity, can be very limiting in the
choice of the uncertainty structure and exogenous input connectivity. A convenient to use
interior-point algorithm for convex problems from LMI Control Toolbox [20] can be used to
solve for the global minimum when a feasible set exists.
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2.7 Smallest unmodeled dynamics subject to parametric uncertainties

In the previous section, we dealt with repeated scalar and/or real uncertainties that may
depend on frequecies. In this section, we consider “parametric uncertainties” which by
physical reasons are considered to be constants but unknown. One approach to handling
this unknown constants is to consider it as an independent parameter identification problem
in the context of system identification, a la [12, 13, 14, 5, 15]. This of course means avoiding
model validation and LFT uncertainties entirely. The alternative viewpoint we take uses
these unknown constants as additional variables in minimizing the norms of model validating
LFT uncertainties.

If parameters imbedded in the plant changes (as in parameter identification problem) such
that the crucial model validation design freedom matrix, M = [G21, G22] changes, this can
cause cascading changes which are difficult to evaluate in a numerical optimization context.
Hence, we try to avoid changing the augmented plant directly by viewing the imbedded plant
changes or parametric uncertainties as LFT uncertianties which are allowed to vary without
changing the augmented plant.

In the case where we have competing unmodeled dynamics and parametric uncertainties,
we suggest fixing an allowance for parametric uncertainties while minimizing non-parametric
uncertainties (of course in addition to a fixed noise allowance). This may be more reasonable
physically than the approach whereby a priori candidate uncertainty weights are fixed for
both parametric and non-parametric uncertianties and then determining a smallest scaled
set. The former approach amounts to a slight modification of the optimization problem for a
smallest scaled set in the previous section and choosing the x scale in equation (19) to unity.

2.8 Unknown but bounded exogenous signals

To deal with unknown exogenous signals such as process and measurement noise, we consider
them as unknown but bounded. No assumptions on the statistics and the independence of
the unknown signals are required. In trying to satisfy the model validation conditions,
these signals are treated as allowances to be used in finding the minimal norm LFT model
uncertainty necessary. As such, erronously assuming an overly conservative level of noise will
likely lead to optimistic levels (smaller than actual) of model validating LFT uncertainty.
On the other hand, assuming a lower level of noise allowance (than actual) will likely lead to
pessimistic levels of (larger than true value) model validating LFT uncertainty. Consequently,
it is important to specify a reasonably accurate model of the noise and disturbances in the
system for model validation and uncertainty bound determination purposes.

For convenience, the combined noise/disturbance allowance in the canonical form is given
by

‖β(ω)‖2 ≤ 1 ∀ω ⇔ ‖β‖l∞ := ‖V −1
β β̂‖l∞ ≤ 1 (23)

where Vβ :=

[
Vε 0
0 Vν

]
denotes the filter matrix for disturbance and noise allowances and

β̂ denotes the exogenous signal as it enters the loop. Specifically, Vβ is designed to reflect

anticipated spectra of β̂ and to normalize the unknown norm bound of β to unity as in
equation (23). The assumed block diagonality in Vβ implies the independence of ε and ν.

In some systems, reasonably accurate models for Vε and Vν may be available. In other
systems where typical spectrums of ε̂(ω) and ν̂(ω) are available and if their individual chan-
nels are known to be independent, a stable discrete time filter can usually be fitted for each
channel and realized as a diagonal filter. In some open loop unstable systems (such as the
Caltech’s Ducted fan in a certain flight configuration), a stabilizing feedback controller is
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necessary to collect data. Under such conditions, developing suitable models to represent
unknown noise and disturbance effects from data can be tricky because of the amplifying
and correlation inducing effects of feedback which is partly determined by loop dynamics,
which itself is not precisely known.

2.9 Performance validation using uncertainty model

A successful performance validation of a control law on a physical system is typically an
important end goal of any control law design. It is also a definitive test on the validity
of the mathematical model used in the analysis of the control system, using a single plant
model or a set of plant models. A key premise in robust control is that any uncertainties
in the mathematical model is to be contained by an appropriate uncertainty ball around a
best (nominal) model. With this premise, a robust controller is designed, which is effectively
an optimal control with respect to a particular uncertainty model. Specifically, a robust
control law is usually designed by optimizing the predicted worst case performance over
the uncertainty model. So in practice, it is crucial that the optimized predicted worst case
performance will actually bound the performance based on measurements.

The predicted worst case performance over a set of plants defined by an uncertainty model
over a given nominal is illustrated in Figure 10 where skewed-µ is defined at each frequency
as [1]

µs(ω) :=

{
min ρ : det

(
I −

[
Iunc 0
0 ρIperf

]
Fl(P,K)∆W

)
= 0, σ̄(∆) ≤ 1

}−1

= max
σ̄(∆unc)≤1

σ̄

[
WperfFu(Fl(P,K),∆uncWunc)

]
(24)

where ∆ :=

[
∆unc 0

0 ∆perf

]
, and W :=

[
Wunc 0

0 Wperf

]
. In this study, performance

F (P,K)
lWperf

∆ uncWunc

e r

Figure 10: Predicted worst case performance based on identified uncertainty model

validation will mean comparing the predicted performance based on an uncertainty model
to the measured performance. More specifically, the measured performance will be defined
as the measured maximum amplification over bounded multivariable signals, whereas the
predicted performance is taken to mean the predicted maximum amplification over a set of
plants. Since it is a bit difficult to test and measure the response of all possible inputs in
the hope of directly measuring the worst case signal amplifications, we identify an empirical
model of the closed loop system from r to e, Ter, with the goal of computing the maximum
singular value of its frequency response matrix, WperfTer.

In general, any stabilizing control law’s performance could be validated using the same
uncertainty model, since a useful uncertainty model of a plant should be independent of the
control law. Indeed, a consistently successful performance validation of several stable control
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law is a reasonable indication of the validity of an uncertainty model in question. Finally,
notice that it is a bit difficult to experimentally determine the worst case responses with
respect to unknown exogenous inputs. Hence, in the above suggested validation, we compare
the measured and identified worst case responses from command input, r, to measured
output, e, to the predicted performance µs from r to e only.
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3 Uncertainty Bound Identification (UBID) Toolbox

3.1 Prerequisites for UBID Toolbox Version 0.1

• MATLAB 6.0 data structure required

• Optimization, LMI, and µ Toolboxes required

3.2 Summary of Commands

Main routines:

Command Description
congrad Defines constraint function and its gradient for smallest set optimization
fungrad Defines objective function and its gradient for smallest set optimization
mnmvcl A smallest model validating set algorithm
noise allow Defines noise and disturbance allowances in model validation
ovbndunc Interactively fits overbound of computed model validating uncertainty norm
sseigunc Forms augmented state space plant with eigenvalue uncertainties
ubid Sample main program for computing a smallest model validating set
ubid lmi Sets up convex program of a smallest set optimization problem
ubid uncstr Forms uncertainty structure
weightunc Define normalizing uncertainty weights for optimization

Utility routines:

Command Description
blkd2x2 Transforms state matrix into 2x2 block diagonal form
form sample Divide a time record into windowed-overlapped-zero appended samples
pinv frd Computes pseudoinverse of a FRD model
svd frd Computes SVD of a FRD model

Routines from other toolboxes:

Command Description
fmincon Solve NLP using an SQP algorithm from Optimization Toolbox
feasp Solve convex feasibility problem from LMI Toolbox
mincx Solve convex program from LMI Toolbox
drawmag Interactively fit a specified order stable filter from µ-Toolbox
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form_sample.mubid.m

ovbndunc.m

mnmvcl.m

ubid_lmi.m

setup convex program

fmincon

solve NLP

feasp

check feasibility

congrad.m

fungrad.m

mincx

constant matrix test
define MV conditions
define smallest MV set

weightunc.m

overbound

Computational flow of UBID Toolbox

preprocess sample data

constraint function
& gradient

solve convex program

cost function & grad

noise_allow.m

form noise/dist allowance

interactive fit

drawmag

blkd2x2.m

block diag state

sseigunc.mubid_uncstr.mubid_uncstr.m

form unc structure form eigenvalue unc

scale unc weight

uncertainty norm
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3.3 Command Reference

3.3.1 blkd2x2

blkd2x2

Purpose

Transforms a state space system into 2x2 block diagonal form.

Synopsis

[A,B,C,D,P,nreal] = blkd2x2(a,b,c,d,Ts)

Description

The inputs (a, b, c, d) are state space matrices and the outputs (A,B,C,D) are block-
diagonalized state matrices computed from

A = P−1 ∗ a ∗ P ; B = P−1 ∗ b; C = c ∗ P ; D = d

where P denotes a similarity transformation matrix. The output nreal denotes the number of
pure real eigenvalue/eigenvectors which are grouped in the first nreal blocks followed by 2 by
2 blocks in the A matrix corresponding to complex conjugate pairs of eigenvalues. These blocks
are arranged in an ascending order of thier absolute frequencies. For a discrete time system with
sampling interval Ts as an (optional) fifth input argument, an equivalent s-domain frequency is
computed from 1

Ts
log z.
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3.3.2 congrad

congrad

Purpose

Define constraint functions and their gradients for a smallest set optimization problem.

Synopsis

[Cin,Ceq,Gin,Geq] = congrad(x,xio,etao,EF,PEFGH,Wunc,bo,blkf,cdimM,rankN,...
rankM,nrrs,nrcs)

Description

This subroutine computes the constraint functions and their gradients for a smallest set
optimization problem which is used by the optimizer fmincon in MATLAB Optimization
Toolbox. This optimizer uses a sequential quadratic programming algorithm to minimize a
constrained nonlinear multivariable function. The constraint functions are assumed to be in
the following forms: Cin(x) ≤ 0 and Ceq(x) = 0. Their corresponding constraint function
gradients are assumed to be: Gin(x) := d(Cin(x))/dx and Geq(x) := d(Ceq(x))/dx. The
output variables Cin, Ceq, Gin and Geq are evaluated at the value x where

x(1 : nψ) := Re(ψ) (nψ × 1) real
x(nψ + 1 : 2nψ) := Im(ψ) (nψ × 1) real
x(2nψ + 1 : 2nψ + nφ) := Re(φ) (nφ × 1) real
x(2nψ + nφ + 1 : m) := Im(φ) (nφ × 1) real
x(m+ 1 : m+ nrrs) := d1, ..., dnrrs (nrrs × 1) real
x(m+ nrrs + 1 : m+ nrrs + 2nrcs):= Re(dnrrs+1), Im(dnrrs+1), . . .

Re(dnrrs+nrcs), Im(dnrrs+nrcs) (2nrcs × 1) real
x(m+ nrrs + 2nrcs + 1) := x2 real

where m := 2nψ + 2nφ. The remaining parameters which are defined at a given frequency
are as follows:

xio = ξo (m× 1) complex
etao = ηo (n× 1) complex
EF = Ω nη × (nφ + nψ) complex, eq(32) [6]
PEFGH = [G11, G12]Ω nη × (nφ + nψ) complex, eq(33) [6]
Wunc = normalizing unc wts (rx1) complex/real
bo = noise uncertainty radius real scalar
blkf = uncertainty structure (τ × 2) real matrix
cdiM = number of columns of M := [G21, G22] (nξ + nβ)
rankN = minimum rank (over freq) of varying matrix (NM)β
rankM = minimum rank (over freq) of varying matrix M
nrrs = number of Repeated Real Scalar uncertainty blocks
nrcs = number of Repeated Complex Scalar uncertainty blocks
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3.3.3 form sample

form sample

Purpose

Divide time record into windowed-overlapped-zero appended samples.

Synopsis

[ymeas samp,yDFT samp,omeg,Ts,t samp,nout,nsamp] = form sample(ymeas,t,...
winpara,wintype)

Description

Given a discrete time record, ymeas as a 2-D matrix (time varying row-wise, different channel
column-wise) and a column vector of discrete time, t, this routine construct samples with
winpara(1) non-zero point lengths. The output variable, ymeas samp, is a 3-D matrix (varying
time, output #, sample #). The corresponding output variable, yDFT samp denotes the DFT
of ymeas samp and stored as a (1 x nsamp) array of FRD models. The variable omeg denotes
a column vector of frequencies corresponding to the DFT of the sample time vector, t samp
having a sampling interval Ts for nout channels. The integer nsamp denotes the number of
samples generated.

The input parameter winpara(2) specifies the total number of data points in each sample
(which the FFT is applied). Zeros are appended if winpara(2) > winpara(1). The number
of samples can be increased by specifying the number of overlap points, winpara(3).

Each sample can be windowed by specifying the parameter, wintype as ‘rec’ for rectangular,
‘han’ for Hanning, and ‘ham’ for Hamming windows. The windowing is applied only to the
nonzero data component of length winpara(1).
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3.3.4 fungrad

fungrad

Purpose

Defines the cost function and its gradient with respect to variables in a smallest model
validating set optimization problem.

Synopsis

[f,g] = fungrad(x,xio,etao,EF,PEFGH,Wunc,bo,blkf,cdimM,rankN,rankM,nrrs,nrcs)

Description

This subroutine computes the cost function, f and its gradient, g, for a smallest set opti-
mization problem which is used by the optimizer fmincon in MATLAB Optimization Toolbox.
The above cost function and its gradient are evaluated at the given input optimization variable:

x(1 : nψ) := Re(ψ) (nψ × 1) real
x(nψ + 1 : 2nψ) := Im(ψ) (nψ × 1) real
x(2nψ + 1 : 2nψ + nφ) := Re(φ) (nφ × 1) real
x(2nψ + nφ + 1 : m) := Im(φ) (nφ × 1) real
x(m+ 1 : m+ nrrs) := d1, ..., dnrrs (nrrs × 1) real
x(m+ nrrs + 1 : m+ nrrs + 2nrcs):= Re(dnrrs+1), Im(dnrrs+1), . . .

Re(dnrrs+nrcs), Im(dnrrs+nrcs) (2nrcs × 1) real
x(m+ nrrs + 2nrcs + 1) := x2 real

where m := 2nψ + 2nφ. The remaining input arguments are subroutine parameters defined
in the command description congrad.
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3.3.5 mnmvcl

mnmvcl

Purpose

This program sets up and solves for a smallest scaled model validating set based on [6].

Synopsis

[unc,Jmin,options,vFLAG] = mnmvcl(rspec,yspec,Gaug,blkf,Vnoise,Vdist,Ts,...
Wunc,iv low,iv hig,nskip,ndist)

Description

Given DFTs of the command or plant (for open loop system) input, rspec and plant output,
yspec, and allowances for the unknown exogenous output noise and disturbances defined by
filters Vnoise and Vdist respectively, this program attempts to solve for a smallest scaled
uncertainty norm bound unc amongst all feasible LFT plant sets satisfying model validation
conditions in the frequency domain. The minimization is over all feasible LFT augmented
plant sets defined by a nominal 2 by 3 block canonical augmented plant, Gaug, having the
block uncertainty structure blkf. The augmented plants are assumed to be discrete linear time-
invariant systems with a sampling interval Ts, identical to the original discrete time signal which
produced rspec and yspec.

Figure 7 shows the LFT augmented plant with all relevant signals required in the optimiza-
tion problem. The block diagonal uncertainties are assumed to be in the forms:

W := diag(w1In1 , · · · , wrInr
, wr+1Inr+1 , · · · , wr+cInr+c

, x · wr+c+1Inr+c+1 , · · · , x · wτInτ
)

∆B := diag(δ1In1 , · · · , δrInr
, δr+1Inr+1 , · · · , δr+cInr+c

,∆r+c+1, · · · ,∆τ )

where δi ∈ R, for i = 1, . . . , r; δi ∈ C, for i = r + 1, . . . , r + c; ∆i ∈ Cni×mi ,
for i = r + c + 1, . . . , τ . The symbol, ∆B , denotes a block diagonal uncertainty structure
bounded by a unit ball. The symbols r, c, and τ denote the number of repeated real scalar
blocks, repeated complex scalar blocks, and total number of uncertainty blocks, respectively. In
general, the scalar δi will be a function of frequency, in contrast to “parametric” uncertainties
which are sometimes explicitly assumed to be constants.

The frequencies, iv low and iv hig define the bandwidth over which model validation con-
ditions are to be satisfied. nskip denotes the number of frequency points to be skipped when
the frequency points based on fixed time sample period are overly dense. ndist denotes the
number of unknown exogenous disturbance input.

mnmvcl solves for a smallest scale model validating set based on the following nonlinearly
constrained optimization formulation:

min
φ∈Cnφ ,ψ∈Cnψ ,δ1,...,δr+c,x2∈R+

x2

subject to ξi(φ, ψ) − δiηi(φ, ψ) = 0, δi ∈ Ri

|δi|2 − |wi|2 ≤ 0

}
i = 1, . . . , r
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ξi(φ, ψ) − δiηi(φ, ψ) = 0, δi ∈ Ci
|δi|2 − |wi|2 ≤ 0

}
i = r + 1, . . . , r + c

‖ξi(φ, ψ)‖2 − x2|wi|2‖ηi(φ, ψ)‖2 ≤ 0, i = r + c+ 1, . . . , τ

‖φ‖2 ≤ b2o

Each element inw1, . . . , wτ of the user specified frequency varying column vector, Wunc, defines
a radius for each individual uncertainty block. The scaling factor, x, appears only with the
radii of the nonrepeated complex blocks, x · wi, i = r + c + 1, . . . , τ , implying that the
scaling minimization is applied only to the nonrepeated complex blocks. This is an assumption
in the problem statement which can be modified if additional a priori assumptions on the
uncertainty structure indicates otherwise. We seek a smallest scaling, x, such that a set of unit
norm-bounded model errors, δ1, . . . , δr+c, and ∆r+c+1, . . . ,∆τ (parameterized by ξ, η), will
exactly reproduce the given input and output signals to within unknown but bounded exogenous
signal allowance limits (see routine noise allow for a description of signal allowances). It is
important to note that the smallest scaling is with respect to user defined radii for each individual
nonrepeated complex uncertainty block.

The output unc is a frequency varying column vector denoting a set of smallest model
validating uncertainty norms satisfying

unci :=
||ξi||
||ηi|| = |δi| ≤ |wi|, i = 1, . . . , r + c

for the repeated real and complex blocks and

unci :=
||ξi||
||ηi|| = ||∆i|| ≤ x|wi|, i = r + c+ 1, . . . , τ

The second output variable Jmin denotes the minimum cost function. Notice that satisfying the
model validation conditons imply the existence of a set of δi and ∆i about a nominal model but
in no way imply that the “true” model error has been recovered or that a “true” model even
exists.

mnmvcl performs a sufficiency test for convexity based on a norm test of the augmented plant
blocks [G11, G12]. If this test is passed the subroutine ubid lmi is called which sets up a
convex program and solves it using the subroutine mincx in LMI Toolbox. If the sufficient
test fails, then mnmvcl assumes a general nonlinearly constrained optimization problem and
uses a sequential quadratic programming algorithm as implemented in fmincon, a routine in
OPTool. fmincon in turn calls fungrad which defines the cost function and its gradient,
and congrad which defines the constraints and its gradients.
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3.3.6 noise allow

noise allow

Purpose

This routine help generate noise (and disturbance) weight filters to unknown but bounded
exogenous signal allowances used in model validation.

Synopsis

[vVnoise,Vnoise] = noise allow(N,Ts,nout,label,ynoise,t raw)

Description

The input variable N denotes an N-point DFT sample used in model validation with sampling
interval Ts while the variable nout denotes the number of channels in the noise/disturbance
signals. If a sample discrete time history, ynoise, is not available, its mean square value (or
variance) of the signal is assumed known. The variance for each of the channels are entered
interactively when the routine is called with only 3 or 4 input arguments. label is an optional
script label. If a sample of discrete time noise sequence ynoise (2-D matrix with time varying
row-wise) is known, the routine is called with all 6 input arguments including a column vector
of discrete time points, t raw.

The output variable vVnoise denotes the frequency-varying noise weight in FRD format,
computed from the fitted continuous state space filter Vnoise in SS format.

Approach

Given only the variance of a broadband (power content up to Nyquist frequency) discrete
time random signal, we approximate a constant power spectra, So from the relation [16]

E [ν2] ≈ So
2π

Ts

The above approximately constant power spectra can be related to a corresponding constant
DFT magnitude using the periodogram formula

So = Sk =
1

N
|XN

k |2, k = 1, . . . , N

where XN
k denotes the DFT of an N-point sequence ν0, . . . , νN−1

XN
k :=

N−1∑
i=0

νie
j2πik
N

In summary, for the case when only the variances of an independent vector noise signal is known,
its noise allowance in terms of its N-point DFT is defined by the constant matrix

V noise =

√
NTsnout

2πdiag (E [ν2]1, . . . , E [ν2]nout , )
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The factor
√
nout is due to the unity 2-norm bound on the magnitude DFT of the vector signal

at each frequency. This means that for multiple channels, a generous level of noise allowance
can arise.

For the case when a sample discrete time history ynoise which is significantly longer than
N is known, several N-point subsamples can be partitioned and weighted (if desired) and an
allowance is estimated by directly fitting a transfer function over the magnitudes of N-point
DFT subsamples. The magnitude of DFTs are fitted interactively using stable real rational
transfer function using the µ-Tool command drawmag. The input-output relationship is

XN
k = V (ωk)W

N
k , k = 1, ..., N/2

where WN
k denotes the N-point DFT of a signal w0, ..., wN−1 whose DFT is unity 2-norm

bounded and V (ωk) denotes the frequency response of a noise allowance filter at frequency
ωk which maps a unity 2-norm bounded DFT signal to the given time sequence. Therefore,
assuming a simulated noise whose DFT satisfies |WN

k | = 1 for all k, fitting |XN
k | is equivalent

to fitting |V (ωk)| as required.
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3.3.7 ovbndunc

ovbndunc

Purpose

Overbound frequency varying uncertainty norm data using stable rational transfer functions.

Synopsis

[Wid z] = ovbndunc(unc frd,blkf,omeg,iv low,iv hig,Ts)

Description

The components of the FRD model unc frd consists of the computed model validating
uncertainty norms for each block whose structure is defined by each row of blkf. The input
omeg is the linearly spaced frequency points from the original FFT of the discrete time data
whose sampling interval is Ts seconds. These frequency points are used only to compare the
rational function fit, Wid z, to the data itself whose range is limited to the frequency bandwidth
in radians defined by bounds iv low and iv high. The output, Wid z, is a fitted discrete
time state space model in SS format. The actual fitting is done interactively using the µ-Tool
command, drawmag.

For a tighter overbound, a linear programming approach given in [17] is recommended.
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3.3.8 pinv frd

pinv frd

Purpose

Compute the pseudoinverse of a FRD model.

Synopsis

[piM frd] = pinv frd(M frd,tol)

Description

This routine computes the pseudoinverse (or inverse), piM frd of the input FRD model,
M frd. At each frequency point, the MATLAB function pinv is used with zero threshold
defined by tol.
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3.3.9 sseigunc

sseigunc

Purpose

Form augmented state-space model with eigenvalue uncertainties.

Synopsis

[Prr,blk eig,nxi eig,eigz,nreal] = sseigunc(Gnomd,Ts)

Description

Input Gnomd denote state space matrices for a discrete time nominal system with sampling
interval Ts. The given nominal state matrix is block diagonalized to 2 by 2 blocks for complex
conjugate pairs and 1 by 1 diagonal element for a real eigenvalue using blkd2x2 routine which
also determines the number of purely real eigenvalues, nreal, placed first on the diagonal.

When the subroutine is called the user is prompted for the set of nominal eigenvalues to
be included as parametric uncertainties. The uncertainty for a purely real nominal eigenvalue
is assumed to be purely real also while the uncertainties for each complex conjugate pair is
also assumed to be complex conjugate, for consistency. All uncertainties in the eigenvalues
are assumed to be independent and real and consists of the real perturbations in the purely
real eigenvalue and the real and imaginary component perturbations in the complex conjugate
eigenvalues.

Prr denotes the resulting augmented plant in discrete time state space, SS format, as shown
in figure below. Same notations are used as in µ-Tools User’s Guide [3] on pages 4-20 which
describes a general affine perturbation for a linear state space model. The uncertainty structure
definition matrix blk eig reflects a set of real uncertainty variables which also includes repeated
scalars if complex conjugate eigenvalues are present. The remaining output arguments include
the number of channels due to eigenvalue uncertainties (i.e. dimension of η or ξ), nxi eig,
nominal eigenvalues in z-plane, eigz, and the number of purely real eigenvalues, nreal.
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3.3.10 svd frd

svd frd

Purpose

Compute the SVD of a FRD model and its rank at each frequency.

Synopsis

[uu,ss,vv,rankss] = svd frd(M frd,tol)

Description

This routine computes the SVD of the input FRD model, M frd where uu*ss*vv = M frd.
At each frequency point, the MATLAB function svd is used with the rank threshold defined
by tol. The output variable, rankss is a column vector of rank at each frequency.
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3.3.11 ubid

ubid

Purpose

Main program for computing a smallest model validating set.

Synopsis

This is a sample main program which calls the following subroutines to compute a smallest
model validating set:

form sample preprocess sample data
noise allow define noise and disturbance allowances
ubid uncstr help construct uncertainty structure
weightunc define relative uncertainty weight for optimization
mnmvcl check feasibility and optimizes for a smallest set
ovbndunc overbound uncertainty norms using stable rational filters

Description

To compute a smallest model validating set, various assumptions are made on the time
signals to be used in defining the set of all model validating plants, the nominal model, the
uncertainty structure, and exogenous noises and disturbances. These assumptions include:

• N-periodic input/output discrete time signal samples

• discrete linear time-invariant systems

• unknown but bounded exogenous noise and disturbances

• Linear Fractional Transformation (LFT) uncertainty structure

• known relative importance of the initial uncertainty weights
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3.3.12 ubid lmi

ubid lmi

Purpose

Sets up convex program of a smallest set optimization problem.

Synopsis

[xopt,copt,EXITFLAG] = ubid lmi(n phi,n psi,xio,etao,coXI,Wunc,bo,blkf)

Description

Sets up and solves a class of convex optimization problems defined by [G11, G12] = 0. For
more general convex problems, this routine can be modified as necessary. The convex optimizer
mincx found in LMI Toolbox [20] is used which assumes a linear cost function

min
z

cT z

subject to LMI constraints[
Qiz − ‖ξo,i‖2 sym

Siz I

]
> 0, i = 1, . . . , τ[

b2o sym
Lz I

]
> 0

where z := [Re(ψ); Im(ψ); Re(φ); Im(φ);x2] ∈ R2nψ+2nφ+1. The constants, c, Qi, Si, L,
and A, are defined in equation 22.

The input parameters, n phi and n psi denote the dimensions of the complex vectors, φ,
and ψ, which are the free parameters defining all model validating sets. xio and etao denote
the constant values of xi and eta which are the fictitious complex vector signals going out and
into the uncertainty block, respectively. The complex matrix, coXI denotes the coefficient of
the vector (φ;ψ) in ξ-equation, i.e., [Ω1; . . . ; Ωτ ] where Ωi is defined in equation 13. The
column vector Wunc denotes the uncertainty weights used in the search for a smallest model
validating set. It is used to define the relative significance of the various uncertainties which
together define a particular model validating set. bo denotes the exogenous signal uncertainty
allowance radius. blkf defines the uncertainty structure.

The output variable x = xopt are defined by:

x(1:n psi) := Re(ψ)
x(n psi+1:2n psi) := Im(ψ)
x(2n psi+1:2n psi+n phi) := Re(φ)
x(2n psi+n phi+1:2n psi+2n phi) := Im(φ)
x(2n psi+2n phi+1) := x2

copt := global minimum
EXITFLAG := 1, global minimum

0, convex program infeasible
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3.3.13 ubid uncstr

ubid uncstr

Purpose

Form augmented plant with uncertainty structure.

Synopsis

[Paug,blkf,dimp,uncstr choice] = ubid uncstr(Po,Ts)

Description

Given a nominal model, Po this routine help to construct an augmented plant, Paug with
the uncertainty structure, blkf in the following canonical form:

(
η

y

)
=

[
G11 G12 G13

G21 G22 G23

]


ξ(
ε
ν

)
r




where ξ = ∆η. The specific forms for G and ∆ depends on the particular type of uncertainty
structure selected, uncstr choice, from the following short list of commonly used structures:

uncstr choice Type of uncertainty

0 provided by user (filename, all output variables defined in Synopsis)
1 additive
2 additive + eigenvalue
3 full output multiplicative
4 full output multiplicative + eigenvalue
5 diagonal output multiplicative
6 diagonal output multiplicative + eigenvalue
7 full input multiplicative
8 full input multiplicative + eigenvalue
9 diagonal input multiplicative
10 diagonal input multiplicative + eigenvalue

The six integers, dimp(1) . . . , dimp(6), define the dimensions of the corresponding vectors,
η, ξ, y, ε, ν, and r.

Alternately, the user can load the augmented plant and uncertainty structure from a file by
choosing uncstr choice = 0 option. In this case all variables, Paug, blkf, and dimp must be
provided.

The input variable Ts denotes the sampling interval in seconds and is necessary only if
eigenvalue uncertainties are included.
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3.3.14 weightunc

weightunc

Purpose

Define initial uncertainty weight/radii for smallest set optimization.

Synopsis

[Wunc,par bnd] = weightunc(blkf,omeg,Ts)

Description

This routine helps the user to select uncertainty weights for use during optimization for
finding a smallest scaled model validating set. The selection of these weights should be based on
the relative importance of different uncertainty blocks and over frequency for a given uncertainty
block. This weighting reflects a priori knowledge by the user on the uncertainty structure of the
system, however, the weighting over frequency has not been implemented yet. The optimization
problem involves finding a minimum scaling of these user defined weights and still satisfy model
validation conditions.

The input consists of the uncertainty block structure, blkf using µ-Tool convention [3], the
discrete frequency points where weighting needs to be defined, omeg, and the sampling time of
data, Ts. The output Wunc, is a frequency varying column vector uncertainty weight in FRD
format, to be used in a numerical optimization for a smallest set while par bnd defines a column
vector of parameter uncertainty allowance.

A basic question of whether a particular set of plant model defined by Wunc cannot be
invalidated by a given set of data is a special case of this smallest scaled set optimization
problem. Namely, if Jmin < 1 (from subroutine mnmvcl) then the given set of plant model
defined by Wunc cannot be invalidated by the given data. If the uncertainty structure leads
to a convex program (including a special class where [G11, G12] = 0) then, Jmin < 1 is a
necessary and sufficient test. For a more general uncertainty structure where Jmin is the result
of a nonliearly constrained optimization problem, the above unit inequality becomes effectively
a sufficient test since it is usually difficult to guarantee that a global optimum has been attained.
Hence if Jmin exceeds 1, the test result is indeterminate.
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4 Application Example 1: Uncertainty bounds of a large flexible
structure

In this application example, we consider the problem of estimating model uncertainty bounds
from data for active vibration control of a large flexible structure. We also show in detail
how UBID Toolbox can be used in this problem.

4.1 Control-Structure-Interaction Evolutionary Model

Figure 11 is a schematic of the NASA Langley’s flexible structure testbed. We consider a
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Figure 11: Control-Structure-Interaction Evolutionary Model (CEM).

NASTRAN model of the CEM consisting of 638 finite element grid points and include only
the first 30 structural modes which are below 8 Hertz. The expected controller bandwidth is
about 2 Hertz and the structural responses are sampled at 20 Hertz. Although many possible
actuator and sensors are available for control as shown in the figure, we consider only 3 air
thrusters and 3 displacement sensors which are approximately collocated and colinear in the
x, y, and z axis corresponding to directions 5, 1, and 2 in the Figure 11. For more details
please refer to [18].

For the purposes of illustration and evaluation of the uncertainty bound estimation ap-
proach, we assume that a physical system and associated exogenous noises can be represented
by a truth model consisting of a 30 structural mode NASTRAN model. We denote the 60-th
order true state space model discretized at sampling interval Ts as(

xk+1

yk

)
=

[
Atrue B
C D

](
xk
uk

)
Response measurements are simulated using this truth model and are used in estimating the
uncertainty bounds.
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4.2 Nominal model and uncertainty structure

Consider a perturbed system is defined by (Apert, B, C,D) where

Apert := Atrue + ∆A

such that Atrue and ∆A matrices have the following block diagonal forms

Atrue :=


 Λ1 0

. . .
0 Λ30


 ∈ R60×60, Λi :=

[
αi βi
−βi αi

]
∈ R2×2, i = 1, . . . , 30

∆A :=


 δΛ1 0

. . .
0 δΛ30


 ∈ R60×60, δΛi :=

[
δαi δβi
−δβi δαi

]
∈ R2×2, i = 1, . . . , 30

Denoting the true eigenvalue conjugate pairs as λi± := αi ± βi, its perturbations denoted
as δλi± are assumed constants such that Apert is stable, i.e., |λi±| < 1, |λi± + δλi±| < 1,
i = 1, . . . , 30. In this example, all eigenvalues are assumed to occur in complex conjugate
pairs for simplicity although in general eigenvalues on the real axis in the z-plane can also
be included.

To generate a nominal model as typical in a realistic application, we internally balance
the perturbed system containing erroneous eigenvalues, (Apert, B, C,D), using a similarity
transformation, P , so that(

x̃k+1

yk

)
=

[
P−1ApertP P−1B

CP D

](
x̃k
uk

)
where x̃k := Pxk denotes the balanced state at time k. The nominal model is then obtained
by keeping only the states corresponding to the 12 largest Hankel singular values. The
neglected 48 states reflect unmodeled dynamics.

The above procedure to generate a nominal model is intended to reflect a common ap-
plications scenario, where various finite element models with a large number of states are
available for a structural system, whos eigenvalues are not totally reliable. The nominal
plant model is derived from the perturbed 60 state model, whos frequencies and damping
values differ from the truth model even before an order reduction. This reflects inevitable
parametric uncertainties about nominal eigenvalues. In addition, notice that the true mode
shapes are preserved in the reduced nominal model to the extent of the approximation of the
principal component vectors to the modal coordinates for lightly damped flexible structures
[19]. Interestingly, in addition to the fact that eigenvalues define the frequency and damping
of resonances in structural vibrations, eigenvalues as candidates for parametric uncertain-
ties for flexible structures appears huristically attractive because they are also invariant to
similarity transformation.

For the above reasons, we select a subset of the eigenvalues from the nominal model
as candidates for parametric uncertainties and additive uncertainties to take into account
unmodeled dynamics and mode shape errors, as illustrated in Figure 12. To demonstrate
that this choice in the uncertainty structure is sufficient, suppose a true system consists of
a high order state space system (A,B,C,D) where A has 2 by 2 block diagonal structure,
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without loss of generality. Furthermore, suppose the matrices are partitioned as follows:

A :=

[
A1

A2

]
:=

[
Ā1 + δA1

Ā2 + δA2

]

B :=

[
B1

B2

]
:=

[
B̄1 + δB1

B̄2 + δB2

]
C :=

[
C1 C2

]
:=
[
C̄1 + δC1 C̄2 + δC2

]
D := D̄ + δD

where (Ā1, B̄1, C̄1, D̄) is intended to represent a lower order nominal model. Then the in-
put/output mapping of the true system can be written as

y =




nominal model
with eigenvalue error︷ ︸︸ ︷

C̄1(zI − Ā1 − δA1)
−1B̄1 + D̄+∆add


u

where

∆add := δD︸︷︷︸
feedthrough
gain error

+

modal output error︷ ︸︸ ︷
δC1(zI − A1)

−1B1 + C̄1(zI − A1)
−1δB1︸ ︷︷ ︸

modal input error

+

unmodeled dynamics︷ ︸︸ ︷
C2(zI − A2)

−1B2

The point here is that such true model can be captured by additive uncertainty structure,
∆add, about a nominal model with eigenvalue uncertainties. The subsequent issue is how
large are the uncertainty balls around the nominal model. Note that the modal output and
input error terms arise from the errors δC1 and δB1 about their respective nominal values
C̄1 and B̄1. Alternatively, δC1 and δB1 (along with δD) could be viewed and treated as
additional parametric uncertainties in a state space model similar to the treatment of eigen-
value uncertainties captured in δA1. However, the former untertainty terms are coordinate
dependent unlike eigenvalues and hence difficult to treat them as parametric uncertainties.

Figure 13 shows the eigenvalues of the true and nominal models. The bottom figure is
a magnified view of the 3 dominating structural resonance modes. The true and nominal
eigenvalues appears to match quite closely although the subsequent frequency response com-
parisons show significant differences. The above tasks to generate the true and nominal
models are given in subroutine ex cem data.

A comparison of the magnitude gains between the true (solid) and nominal (dash) models
and the corresponding differences (dot) for all inputs and outputs are shown in Figure 14. The
difference plot (dot) show significant discrepencies especially around structural resonance
frequences. For example, consider a Bode plot for input 1 to output 1 as given in Figure
15. The figure shows that despite significant errors near their resonance frequencies, the
nominal model approximates the three low frequency structural resonances at .9, 4.5 and
15 rad/sec Several higher frequency secondary resonances beyond 20 rad/sec are ignored by
the nominal model. The largest discrepency between the true and nominal model frequency
responses occurs at the dominating structural resonance at .9 rad/sec.

4.3 Smallest unmodeled dynamics for model validation

The main goal is to determine if the uncertainty bound estimation algorithm can capture both
the true unmodeled dynamics and parametric uncertainties from data with reasonable a priori

42



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

0.9
0.8
0.7
0.6
0.5
0.4

0.3
0.2

0.1

/10T
7π/10T

π/5T

3π/5T

π/10T

Re(z)
Im

(z
)

CEM eigenvalues: True (o) vs  Nominal (x)

0.95 0.96 0.97 0.98 0.99 1
0.04

0.042

0.044

0.046

0.048

0.05

Re(z)

Im
(z

)

Structural resonance modes near .9 rad/sec

Figure 13: True and nominal eigenvalues of CEM model.

assumptions including noise allowances to account for unknown exogenous disturbances. In
the following, we show the results based on the simplest case where only additive uncertainty
is used to two other cases where we incorporate a priori parametric eigenvalue uncertainty
allowances while seeking smallest additive uncertainties for model validation.

All three input test signals to the true system is generated by independently driving a
fourth order Butterworth filter of bandwidth 5 Hertz with a white (bandwidth of Nyquist
frequency) Gaussian random signal with unit standard deviation. The additive output noise
is similarly chosen to be a white Gaussian random signal with a standard deviation of .01.
The test data consists of two periods each about 408 seconds duration. The test signal is
only applied during the first 204 seconds followed by free response for another 204 seconds.
Notice that the next period begins after most of the transient free response decays to the
output noise levels. This is designed to mitigate the erronous effects of nonperiodicity in the
computation of DFT’s for use in model validation.
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Figure 14: Frequency response magnitude comparison of CEM: outputs 1-3, inputs 1-3.
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4.3.1 Smallest additive uncertainty

Step 1 Load output and input time histories

• Load raw time histories ymeas raw, rmeas raw:

LOAD SIMULATED INPUT/OUTPUT DATA, ymeas_raw, rmeas_raw, t_raw
>> load ex_cem_data.mat
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• Window data to form multiple samples by specifying number of nonzero points in
sample, npts, number of points in sample to apply FFT, nfft, number of data
points to overlap, noverlp. Plots for the sample time histories to be used in
uncertainty bound estimation

>> [ymeas,yDFT,omeg,Ts,t,nout,nsamp] = form_sample(ymeas_raw,t_raw,winpara, "rec")
PREPARE TIME RECORDS (WINDOWED-OVERLAPPED-ZERO APPENDED SAMPLES)

Beginning time of data available = 0
End time of data available = 819.15
Number of time points in signal sample (npts) = 8192
Number of points in sample (nfft), with zeros appended = 8192
Number of data overlap (noverlp) = 0

>> [rmeas,rDFT,omeg,Ts,t,ninp,nsamp] = form_sample(rmeas_raw,t_raw,winpara,"rec")
PREPARE TIME RECORDS (WINDOWED-OVERLAPPED-ZERO APPENDED SAMPLES)

Beginning time of data available = 0
End time of data available = 819.15
Number of time points in signal sample (npts) = 8192
Number of points in sample (nfft), with zeros appended = 8192
Number of data overlap (noverlp) = 0

There are 2 data samples - select sample number for MV.. 1
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Step 2 Form allowance filters for output noise and exogenous disturbances

• Load output noise time history variable, ynoise and fit filter, Vnoise

LOAD TRUE OUTPUT NOISE, ynoise
>> load ex_cem_truenoise.mat
>> [vVnoise,Vnoise] = noise_allow(ntime,Ts,nout,["noise_allow_" label ":"],ynoise,t_raw)

PREPARE TIME RECORDS (WINDOWED-OVERLAPPED-ZERO APPENDED SAMPLES)
Beginning time of data available = 0
End time of data available = 819.15
Number of time points in signal sample (npts) = 8192
Number of points in sample (nfft), with zeros appended = 8192
Number of data overlap (noverlp) = 4096
Interactively fit magnitude DFT, Channel 1..

Re-fit Channel 1 ? (y/n) n
Interactively fit magnitude DFT, Channel 2..

Re-fit Channel 2 ? (y/n) n
Interactively fit magnitude DFT, Channel 3..

Re-fit Channel 3 ? (y/n) n
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• Define allowance filter for exogenous disturbances, Vdist from expected variance

>> [vVdist,Vdist] = noise_allow(ntime,Ts,ninp,["dist_allow_" label ":"]
CONSTRUCT EXOGENOUS SIGNAL ALLOWANCE FILTER FROM VARIANCE ESTIMATE

Enter variance(MSV) of unknown signal, Channel 1.. 0
Enter variance(MSV) of unknown signal, Channel 2.. 0
Enter variance(MSV) of unknown signal, Channel 3.. 0

Step 3 Load nominal model, Po

LOAD NOMINAL MODEL, Po (SS format)
>> load ex_cem_nominal.mat

TRUE EIGENVALUE PERTURBED EIGENVALUE DIFFERENCE

ans =

0.9954 + 0.0462i 0.9943 + 0.0476i -0.0011 -0.0015
0.9951 + 0.0467i 0.9953 + 0.0470i 0.0001 -0.0003
0.9940 + 0.0482i 0.9948 + 0.0474i 0.0009 0.0008
0.9689 + 0.2280i 0.9703 + 0.2264i 0.0014 0.0016
0.9673 + 0.2342i 0.9673 + 0.2337i -0.0000 0.0006
0.9555 + 0.2754i 0.9560 + 0.2751i 0.0005 0.0003
0.8830 + 0.4490i 0.8827 + 0.4485i -0.0003 0.0005
0.7363 + 0.6552i 0.7364 + 0.6549i 0.0001 0.0003
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0.7109 + 0.6816i 0.7114 + 0.6809i 0.0005 0.0006
0.7021 + 0.6903i 0.7019 + 0.6882i -0.0001 0.0021
0.6758 + 0.7150i 0.6766 + 0.7148i 0.0008 0.0002
0.5948 + 0.7718i 0.5962 + 0.7733i 0.0014 -0.0014
0.5179 + 0.8319i 0.5180 + 0.8324i 0.0002 -0.0005
0.5155 + 0.8333i 0.5148 + 0.8351i -0.0007 -0.0018
0.3825 + 0.8989i 0.3822 + 0.9003i -0.0003 -0.0014
0.2570 + 0.9397i 0.2590 + 0.9392i 0.0020 0.0005
0.2040 + 0.9515i 0.2042 + 0.9522i 0.0002 -0.0006
0.0021 + 0.9691i 0.0013 + 0.9675i -0.0008 0.0017
-0.0630 + 0.9658i -0.0637 + 0.9658i -0.0007 -0.0000
-0.0763 + 0.9645i -0.0758 + 0.9666i 0.0005 -0.0021
-0.0837 + 0.9638i -0.0838 + 0.9636i -0.0001 0.0001
-0.0971 + 0.9622i -0.0965 + 0.9602i 0.0006 0.0020
-0.1948 + 0.9453i -0.1939 + 0.9450i 0.0009 0.0003
-0.2219 + 0.9387i -0.2208 + 0.9394i 0.0011 -0.0007
-0.3244 + 0.9061i -0.3240 + 0.9049i 0.0004 0.0013
-0.3276 + 0.9049i -0.3292 + 0.9039i -0.0016 0.0010
-0.3396 + 0.9002i -0.3394 + 0.8991i 0.0002 0.0010
-0.4943 + 0.8214i -0.4933 + 0.8220i 0.0010 -0.0006
-0.5133 + 0.8091i -0.5131 + 0.8083i 0.0002 0.0008
-0.7389 + 0.6002i -0.7396 + 0.6018i -0.0007 -0.0015

NOMINAL EIGENVALUE (BALANCED REDUCED PERTURBED)

ans =

0.9950 + 0.0472i
0.9950 - 0.0472i
0.9943 + 0.0476i
0.9943 - 0.0476i
0.9701 + 0.2264i
0.9701 - 0.2264i
0.8838 + 0.4457i
0.8838 - 0.4457i
0.7121 + 0.6800i
0.7121 - 0.6800i
0.6759 + 0.7144i
0.6759 - 0.7144i
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Step 4 Choose additive plus eigenvalue uncertainty structure to form augmented plant
Gaug. The first three modes are chosen as uncertain parameters.

>> [Gaug,blkf,dimp,uncstr_choice] = ubid_uncstr(Po,Ts)
Form augmented plant with uncertainty structure
OUTPUTS INPUTS

eta (dimp(1)) <----- [G11, G12, G13] <---- xi (dimp(2))
y (dimp(3)) <----- [G21, G22, G23] <---- epsil (dimp(4))

<---- nu (dimp(5))
<---- u (dimp(6))

ALL WEIGHTS FOR UNKNOWN EXOGENOUS INPUTS, Vdist=Vnoise=I

Select from the following list of uncertainty structures:
AUGMENTED PLANT WITH ...

0. PROVIDED BY USER
1. ADDITIVE UNCERTAINTY
2. ADDITIVE + EIGENVALUE UNCERTAINTIES
3. FULL OUTPUT MULTIPLICATIVE UNCERTAINTY
4. FULL OUTPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
5. DIAGONAL OUTPUT MULTIPLIATIVE UNCERTAINTY
6. DIAGONAL OUTPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
7. FULL INPUT MULTIPLICATIVE UNCERTAINTY
8. FULL INPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
9. DIAGONAL INPUT MULTIPLIATIVE UNCERTAINTY
10. DIAGONAL INPUT MULTIPLIATIVE + EIGENVALUE UNCERTAINTIES

Enter the uncertainty structure desired (0 - 10) ----> 1

ADDITIVE UNCERTAINTY
eta_add(3) <----- [G11, G12, G13] <---- xi_add(3)
y(3) <----- [G21, G22, G23] <---- epsil(3)

<---- nu(3)
<---- u(3)
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Step 5 Choose reference weights, Wunc used in smallest set uncertainty optimization. As
defined by blkf, the uncertainty blocks consists of six repeated real 2 by 2 blocks with
a single full 3 by 3 complex block.

>> [Wunc,par_bnd] = weightunc(blkf,om,Ts)

Define optimizing weights for uncertainty blocks ...

blkf =

3 3

Enter CONSTANT weights (over all frequencies) for each uncertainty block as a
COLUMN vector (corresponds to BLKF variable) ---> 1

Step 6 Solve for a smallest scaled model validating set.

>> [unc_frd,x2,options,vFLAG] = mnmvcl(rDFTi,yDFTi,Gaug,blkf,vVnoise,vVdist,Ts,...
>> Wunc,iv_low,iv_hig,nskip,ndist)

Check feasible conditions (existence) for model validation:
-Necessary condition eq(16) satisfied: M full row rank => eyo E Im(M)
-Necessary condition eq(20) satisfied
NM_beta is full row rank (T2 does not exist) => LHS of eq(20) is 0

====================================================================
[G11 G12] = 0 satisfied, Convex Program solved using LMI Toolbox
====================================================================
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 1 0.107 (r/s) UNC = [ 0.002]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 2 0.199 (r/s) UNC = [ 0.004]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 3 0.291 (r/s) UNC = [ 0.003]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 4 0.383 (r/s) UNC = [ 0.031]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 5 0.476 (r/s) UNC = [ 0.021]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 6 0.568 (r/s) UNC = [ 0.042]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 7 0.660 (r/s) UNC = [ 0.025]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 8 0.752 (r/s) UNC = [ 0.205]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 9 0.844 (r/s) UNC = [ 0.419]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 10 0.936 (r/s) UNC = [ 1.357]

.

.

.
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 200 18.423 (r/s) UNC = [ 0.000]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 201 18.515 (r/s) UNC = [ 0.000]
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>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 202 18.607 (r/s) UNC = [ 0.000]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 203 18.699 (r/s) UNC = [ 0.000]
>> [x,copt,EXITFLAG] = ubid_lmi(n_phi,n_psi,xio_ii,etao_ii,EF_ii,Wunc_ii,bo,blkf)
FREQ 204 18.791 (r/s) UNC = [ 0.000]
>> [Wid_z] = ovbndunc(unc_frd,blkf,omeg,iv_low,iv_hig,Ts)

Curve fit uncertainty bound # 1, blkf = [3,3] ..
Plot summary of weights? (y/n) n

Figure 16 shows the smallest additive uncertainty (circle) that satisfy model validation
conditions as compared to the true additive uncertainty (dotted line). A fitted additive
uncertainty model is also shown (dashdot line) as a reference. The identified smallest additive
uncertainty accurately recovers the true additive uncertainty. However, notice that the true
additive uncertainty is due to a combination of both parametric eigenvalue uncertainties
and unmodeled dynamics while the identified uncertainty model consists only of additive
uncertainty. This demonstrates a limiting property that model validating conditions are
only necessary conditions in determining “correct” uncertainty models, i.e., just matching
input-output responses are not germane to uncertainty structure. In this example, it is clear
that a nominal allowance in the output noise did not have a significant effect on the identified
additive uncertainty. Finally, note that due to the simplicity of the uncertainty structure,
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Figure 16: Identified smallest additive uncertainty (circle), true additive uncertainty (dot)

the numerical computations involved convex optimizations and was very efficient.
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4.3.2 Smallest additive uncertainty with eigenvalue uncertainty (.001) allowance

Step 4 Choose additive plus eigenvalue uncertainty structure to form augmented plant
Gaug. The first three modes are chosen as uncertain parameters.

Form augmented plant with uncertainty structure
OUTPUTS INPUTS

eta (dimp(1)) <----- [G11, G12, G13] <---- xi (dimp(2))
y (dimp(3)) <----- [G21, G22, G23] <---- epsil (dimp(4))

<---- nu (dimp(5))
<---- u (dimp(6))

ALL WEIGHTS FOR UNKNOWN EXOGENOUS INPUTS, Vdist=Vnoise=I

Select from the following list of uncertainty structures:
AUGMENTED PLANT WITH ...

0. PROVIDED BY USER
1. ADDITIVE UNCERTAINTY
2. ADDITIVE + EIGENVALUE UNCERTAINTIES
3. FULL OUTPUT MULTIPLICATIVE UNCERTAINTY
4. FULL OUTPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
5. DIAGONAL OUTPUT MULTIPLIATIVE UNCERTAINTY
6. DIAGONAL OUTPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
7. FULL INPUT MULTIPLICATIVE UNCERTAINTY
8. FULL INPUT MULTIPLICATIVE + EIGENVALUE UNCERTAINTIES
9. DIAGONAL INPUT MULTIPLIATIVE UNCERTAINTY
10. DIAGONAL INPUT MULTIPLIATIVE + EIGENVALUE UNCERTAINTIES

Enter the uncertainty structure desired (0 - 10) ----> 2

Mode number z-eigenvalue s-eigenvalue
_________________________________________________________

1 0.99504+0.047202i -0.077057+0.94803i
2 0.99433+0.047632i -0.090722+0.95733i
3 0.97008+0.22638i -0.077366+4.5851i
4 0.88381+0.44571i -0.2043+9.3416i
5 0.71212+0.68002i -0.309306+15.2468i
6 0.67588+0.71436i -0.33432+16.2614i

SELECT EIGENVALUES TO INCLUDE AS PARAMETRIC UNCERTAINTY
Enter a row of Mode numbers (in increasing order).. [1:3]

AUGMENTED PLANT WITH EIGENVALUE UNCERTAINTIES
State-space model with 15 outputs, 15 inputs, and 12 states.
OUTPUTS

due to 0 real eigenvalue uncertainties
due to 3 complex conjugate eigenvalue pair uncertainties
due to 3 physical outputs

INPUTS
due to 0 real eigenvalue uncertainties
due to 3 complex conjugate eigenvalue pair uncertainties
due to 3 physical inputs

>> [Prr,blk_eig,nxi_eig,eigz,nreal] = sseigunc(Po,Ts)

AUGMENTED PLANT WITH ADDITIVE + EIGENVALUE UNCERTAINTIES
eta_eig(12) <----- [G11, G12, G13] <---- xi_eig(12)
eta_add(3) <----- [G21, G22, G23] <---- xi_add(3)
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y(3) <---- epsil(3)
<---- nu(3)
<---- u(3)

Step 5 Choose reference weights, Wunc used in smallest set uncertainty optimization. As
defined by blkf, the uncertainty blocks consists of six repeated real 2 by 2 blocks with
a single full 3 by 3 complex block.

>> [Wunc,par_bnd] = weightunc(blkf,om,Ts)
Define optimizing weights for uncertainty blocks ...

blkf =

-2 0
-2 0
-2 0
-2 0
-2 0
-2 0
3 3

Enter CONSTANT weights (over all frequencies) for each uncertainty block as a
COLUMN vector (corresponds to BLKF variable) ---> [.001*ones(6,1);1]

Step 6 Solve for a smallest scaled model validating set.

>> [unc_frd,x2,options,vFLAG] = mnmvcl(rDFTi,yDFTi,Gaug,blkf,vVnoise,vVdist,Ts,...
>> Wunc,iv_low,iv_hig,nskip,ndist)

Check feasible conditions (existence) for model validation:
-Necessary condition eq(16) satisfied: M full row rank => eyo E Im(M)
-Necessary condition eq(20) satisfied
NM_beta is full row rank (T2 does not exist) => LHS of eq(20) is 0

=============================================================
[G11 G12] .ne. 0, use SQP routine in Optimization Toolbox
=============================================================
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 1 0.107 (r/s) UNC = [ 0.003]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 2 0.199 (r/s) UNC = [ 0.003]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 3 0.291 (r/s) UNC = [ 0.004]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 4 0.383 (r/s) UNC = [ 0.008]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 5 0.476 (r/s) UNC = [ 0.006]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
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FREQ 6 0.568 (r/s) UNC = [ 0.002]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 7 0.660 (r/s) UNC = [ 0.002]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 8 0.752 (r/s) UNC = [ 0.010]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 9 0.844 (r/s) UNC = [ 0.059]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 10 0.936 (r/s) UNC = [ 0.154] MAX NUMBER ITERATION REACHED

.

.

.
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 200 18.423 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 201 18.515 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 202 18.607 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 203 18.699 (r/s) UNC = [ 0.000]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 204 18.791 (r/s) UNC = [ 0.001]
>> [Wid_z] = ovbndunc(unc_frd,blkf,omeg,iv_low,iv_hig,Ts)

Curve fit uncertainty bound # 1, blkf = [-2,0] ..
Curve fit uncertainty bound # 2, blkf = [-2,0] ..
Curve fit uncertainty bound # 3, blkf = [-2,0] ..
Curve fit uncertainty bound # 4, blkf = [-2,0] ..
Curve fit uncertainty bound # 5, blkf = [-2,0] ..
Curve fit uncertainty bound # 6, blkf = [-2,0] ..
Curve fit uncertainty bound # 7, blkf = [3,3] ..
Plot summary of weights? (y/n) n

Figure 17 shows the identified smallest additive uncertainty (circle) subject to eigenvalue
uncertainty allowance (of .001 on the first three structural modes) as compared to the true
additive error (dot). A fitted additive uncertainty model is also shown (dashdot line) as a
reference. The level of the identified smallest additive uncertainty is smaller as expected
than the true additive uncertainty because of the eigenvalue uncertainty allowance of .001
on the first three structural modes. Apparently the eigenvalue uncertainty allowance of .001
is not insignificant but less than the true eigenvalue error which is between .0003 to .0021
(please refer to the eigenvalues given in Step 3 of the previous case). Obviously, there are
no clear rules in the selection of a priori levels of parametric uncertainty allowances. How-
ever, it is clear that incorporating “reasonable” levels of parametric uncertainty allowances
may be helpful in determining accurate uncertainty models. In this case involving repeated
scalar parametric uncertainties, solving a sequence of nonlinear optimization problems were
required and the numerical computations involved were non trivial but is not central to the
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Figure 17: Identified smallest additive uncertainty (circle) with eigenvalue uncertainty allowance
(.001), true additive uncertainty (dot)

study reported here.

4.3.3 Smallest additive uncertainty with eigenvalue uncertainty (.002) allowance

Step 5 Choose reference weights, Wunc used in smallest set uncertainty optimization. As
defined by blkf, the uncertainty blocks consists of six repeated real 2 by 2 blocks with
a single full 3 by 3 complex block.

>> [Wunc,par_bnd] = weightunc(blkf,om,Ts)
Define optimizing weights for uncertainty blocks ...

blkf =

-2 0
-2 0
-2 0
-2 0
-2 0
-2 0
3 3

Enter CONSTANT weights (over all frequencies) for each uncertainty block as a
COLUMN vector (corresponds to BLKF variable) ---> [.002*ones(6,1);1]
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Step 6 Solve for a smallest scaled model validating set.

>> [unc_frd,x2,options,vFLAG] = mnmvcl(rDFTi,yDFTi,Gaug,blkf,vVnoise,vVdist,Ts,Wunc,iv_low,iv_hig,n
Check feasible conditions (existence) for model validation:
-Necessary condition eq(16) satisfied: M full row rank => eyo E Im(M)
-Necessary condition eq(20) satisfied
NM_beta is full row rank (T2 does not exist) => LHS of eq(20) is 0

=============================================================
[G11 G12] .ne. 0, use SQP routine in Optimization Toolbox
=============================================================
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 1 0.107 (r/s) UNC = [ 0.002]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 2 0.199 (r/s) UNC = [ 0.003]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 3 0.291 (r/s) UNC = [ 0.004]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 4 0.383 (r/s) UNC = [ 0.008]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 5 0.476 (r/s) UNC = [ 0.006]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 6 0.568 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 7 0.660 (r/s) UNC = [ 0.006]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 8 0.752 (r/s) UNC = [ 0.003]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 9 0.844 (r/s) UNC = [ 0.003]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 10 0.936 (r/s) UNC = [ 0.005]

.

.

.
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 200 18.423 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 201 18.515 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 202 18.607 (r/s) UNC = [ 0.001]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
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>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 203 18.699 (r/s) UNC = [ 0.000]
>> [x,FVAL,EXITFLAG] = fmincon("fungrad",x0,[],[],[],[],vlb,vub,"congrad",options,...
>> xio_ii,etao_ii,EF_ii,GOMEG_ii,Wunc_ii,bo,blkf,ncolM,minrankNMb,minrankM,nrrs,nrcs)
FREQ 204 18.791 (r/s) UNC = [ 0.001]
>> [Wid_z] = ovbndunc(unc_frd,blkf,omeg,iv_low,iv_hig,Ts)

Curve fit uncertainty bound # 1, blkf = [-2,0] ..
Curve fit uncertainty bound # 2, blkf = [-2,0] ..
Curve fit uncertainty bound # 3, blkf = [-2,0] ..
Curve fit uncertainty bound # 4, blkf = [-2,0] ..
Curve fit uncertainty bound # 5, blkf = [-2,0] ..
Curve fit uncertainty bound # 6, blkf = [-2,0] ..
Curve fit uncertainty bound # 7, blkf = [3,3] ..
Plot summary of weights? (y/n) n

Figure 18 shows the identified smallest additive uncertainty (circle line) subject to eigenvalue
uncertainty allowance (of .002 on the first three structural modes) as compared to the true
additive error (dot line). A fitted additive uncertainty model is also shown (dashdot line)
as a reference. The level of the identified smallest additive uncertainty is very small as
expected than the true additive uncertainty because of the eigenvalue uncertainty allowance
of .002 on the first three structural modes was comparable to the true eigenvalue error which
dominated the additive errors at the lower frequencies.
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Figure 18: Identified smallest additive uncertainty (circle) with eigenvalue uncertainty allowance
(.002), true additive uncertainty (dot)
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4.3.4 Smallest additive uncertainty with uncertain mode 3 only

As a comparison, Figure 19 shows what happens to the identified smallest additive uncer-
tainty if the eigenvalue uncertianty allowance is increased two fold to .004 but only mode
# 3 (resonant frequency approximately 4.5 rad/sec) as assumed uncertain with the same
output noise allowance. Figure 19 shows that the sharp error peak near 4.5 rad/sec due to
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Figure 19: Identified smallest additive uncertainty (circle) with eigenvalue uncertainty allowance
(.004) only on mode # 3, true additive Thisuncertainty (dot)

the parametric error has been accounted for by the uncertainty allowance of .004 at mode #
3. The other major error peak caused the parametric error near .95 rad/sec is covered by the
additive uncertainty because apparently the large (more than twice of true parameteric er-
ror) neighboring eigenvalue allowance did not reduce the additive uncertainty at .95 rad/sec.
This behavior is expected since structural resonances due to distinct modes are generally
uncoupled. Note that doubling the parametric allowance did not noticably decrease the
additive uncertainty. Of course from a robust control design point of view, this apparently
unnecessarily large parametric uncertainty level limits the attainable performance robust-
ness unnecessarily. This example again demonstrates the highly non-unique nature of model
validating uncertainty sets as highlighted in this study.

59



5 Application Example 2: Performance validation of a ducted fan

5.1 Caltech Ducted Fan

In this section we outline uncertainty bounds obtained from measured data for the purpose of
predicting the dynamic behavior of a realistic physical system, i.e. validate a system’s closed
loop performance to within a reasonable uncertainty model for an independent controller.
Discrepencies between responses predicted by analytical and identified models and actual
measurements are highlighted. The predictive capability of various model validating sets
of uncertianties are evaluated using simulated and experimental data. Despite the presence
of a high level of aerodynamic disturbance with limited data, which significantly limited
both identification and model validation results, the model validating uncertainties led to
improved predictions of closed loop performance.

A schematic of the Ducted Fan is described in Figure 20. Details on the description of the
testbed are given in [22]. Briefly, a set of encoders measure ψ, z and θ, and a filter is used in

Figure 20: Ducted fan testbed schematic.

the ψ channel to estimate its velocity. The measured outputs are given by dψ
dt

(airspeed), z
(altitude), and θ (angle of attack), about trim. A derivative filter used to estimate airspeed
inevitably introduces a small phase lag which we can neglect in the nominal model but is
implicitly accounted for in the uncertainty model. The inputs in the following experiments
consist of the fan motor voltage, Vm, and the paddle angle, δp.
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Figure 21: Motion about a trim at level flight stabilized by a PD controller.

The base sampling rate for the experiments are 100 Hz which is sufficient to mitigate alias-
ing effects with the implementation of a digital anti-aliasing filter having a break frequency
of 5 Hz. A corresponding small phase lag was deemed a good tradeoff to mitigate allias-
ing effects in the feedback loop during controller implementation at 20 Hz. This lower rate
also helps to maximize the time length of recordable data, given memory limitations during
testing while satisfying effective bandwidth requirements. Since the open loop dynamics of
the Ducted fan is marginally stable for this particular level flight, a Proportional-Derivative
(PD) controller is designed and implemented (for details see Appendix) in all subsequent
experiments to stabilize and regulate its attitude, altitude, and rotation rate about a trim
whose linearized motion is shown in Figure 21.

Three independent sets of experiments each 20 minutes duration were completed. The
first set involves zero test inputs and are used for identifying noise spectra in closed loop.
The second set is used for system identification and model validation. The third set of exper-
iments involve an additional controller over the PD controller for the purpose of performance
prediction and validation.

5.2 Nominal model and uncertainty structure

5.2.1 Analytical model

Among many choices in coordinate systems and state variables, consider an analytical model
described by a set of first order ordinary differential equations having states, [V, z, ż, θ, θ̇],
with inputs uT = [Vm, δp] and outputs yT = [dψ/dt, z, θ]. A trim condition at level flight is
obtained at a forward flight velocity, Vo = 6 m/s, zero altitude, z, and elevator deflection,
δe, and a perturbed linear model about the trim is defined. For more details, please refer to
Appendix.

The accuracy of an analytical model of the Ducted fan depends on many factors. A
partial list includes the following: proper application of physical principles and selection
of associated physical parameters governing aerodynamics on the boom, wing, and shroud,
motor velocity; thrust dependence on applied voltage and paddle deflections, airspeeds;
structural flexure in boom, cables, and gears; nature of friction or energy dissipation between
moving parts including stiction; fan motor dynamics; wall effects on the flow field, etc.
Component wind tunnel test data is used to develop aerodynamic models which is also
not totally accurate. In addition, a difficult but crucial task is to develop a model of the
transient aerodynamic disturbance/noise effects, which appears to account for much of the
noisy closed loop system response. By periodically flying through its own wake in level
flight, the resulting unsteady aerodynamic forces will depend on past control input histories,
current attitude and position. This periodicity is evident from output noise periodograms
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Variable Analytical model Identified model
Vm 0.4665 0.4178
δp 0.6745 0.3971

dψ/dt 0.8341 0.8391
z 0.9595 0.6600
θ 0.8542 0.5156

Table 2: Prediction errors based on l2 norms over .1 to 10 rad/sec.

which show peaks whose frequency matched the nominal z-axis rotation rate of the Ducted
fan (see Figure 24). This means that the exogenous output noise is actually correlated to
both input and output variables which will cause unknown bias errors in the identification
of an empirical model.

5.2.2 Identified models

In all subsequent identification results, we apply the Subspace Model Identification [25, 15]
algorithm. The order indicator obtained directly from time domain data show no significant
gap to indicate a natural order of the system based on measured data in Figure 52, in
stark contrast to the presence of a clear order for simulated data in Figure 43. Nevertheless,
inspired by analytical models having 5 plant states plus 4 PD controller states (see Appendix
for details), an 8th order reduced model is chosen for the system consisting of plant and the
PD controller. As an indication of the degree of reliability in this particular identification
algorithm, it was found that, for example, if a 9th or larger order is selected, unstable closed
loop systems with unrealistic poles and zeros at unpredictable locations can appear.

5.2.3 Comparison of analytical and identified models

Figure 22 shows an identified frequency response across plant from δp to θ with PD controller.
The frequency response of these identified models roughly resemble corresponding analytical
models over the bandwidth of interest, namely, .1 to 10 rad/sec. For example, at .2 and 2
rad/sec, where the gains match well, there is about 40 to 50 degrees of phase discrepency.
The match appears to be better in the second input, namely, paddle angle δp, than for the
fan motor voltage input Vm (see Figure 53 for the rest of the comparison). This better match
in the second input is consistent with physical intuition, an indication of a better analytical
model in the dynamics associated with the paddle angle input, particularly in the prediction
of the altitude z and angle of attack θ.

Following the notion [5] that a model is a means to predict the output response due to
an arbitrary input, the above discrepencies do not necessarily indicate that either model
is more accurate than the other since both predictions, of frequency responses from the
command inputs, may differ significantly from the measured spectra. Accordingly, Table 2
shows prediction errors of all input and output signals based on analytical and identified
models when compared to measured signals. These prediction errors are actually l2 norms
over the frequency range of interest, .1 to 10 rad/sec (equivalent to a weighted RMS), and are
normalized by the l2 norms of the corresponding measured signals. Although the prediction
errors for the identified model is significantly less than that of the analytical model (except
the dψ/dt channel), still there are significant discrepencies for both models when compared
to measured signals. Since the predicted signals do not include the effects of unknown
exogenous signals, the above discrepencies are due to an unknown mixture of model errors
and unaccounted unknown exogenous signals, which is estimated next.
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Figure 22: Frequency response from δp to θ with PD controller: identified 8th order (solid), ana-
lytical (dash).

5.2.4 Equivalent output noise model

Figure 23 illustrates the noise identification problem for a closed loop system. Figure 23a
shows the unknown output noise q within the inner loop PD controller, K. The end goal of
noise identification in this study, is to obtain a suitable filter, V , such that some unknown
but unity bounded discrete-time white noise, ν, sequentially drive the filters V , and plant
output sensitivity (I − PK)−1, resulting in an “equivalent” output noise model suitable
for subsequent model and performance validations and robust control application with an
outer loop controller, C. Note that the “equivalent” output noise is intended to describe
the particular approach whereby all unknown exogenous signals are modeled as an additive
noise at the plant output.

A simple (but perhaps overly simple) approach to generate an output noise model is to
directly fit the periodograms of individual output channels under zero command input. This
implies that the equivalent output noise model, (I − PK)−1V , is assumed to be diagonal
which of course is not true because we know that the PD closed loop response due to
output tracking command is strongly coupled meaning that the output sensitivity filter is
not diagonal. An alternative and more physically compatible approach followed here is to
assume that q is an independent set of exogenous inputs. To estimate the output spectrum
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Figure 23: Noise model identification schematic: (a) unknown disturbance q with known inner loop
controller K, (b) additive noise at output with inner loop closed, (c) system with an outer loop
controller C with normalized noise ν.

of q, we utilize previously identified frequency responses of the input sensitivity and closed
loop frequency response across plant. As outlined in the Appendix, an overdetermined set of
loop conditions given by equations 32, are used to solve for q directly. Finally, the diagonal
filter V is obtained by the unit norm condition of signal ν.

Figure 24 shows the identified equivalent output noise spectrum, q, based on zero inputs,
r = 02×1, closed loop experimental data. The figure also shows the fitted diagonal normal-
izing filter V for each channel. The identified spectra, q, indicates that there exists a large
disturbances at about 2.5n rad/sec where n = 1, . . . and most prominent in airspeed, dψ/dt
followed by angle of attack, θ, but not noticable for altitude, z. The frequency of these
peaks match the rotation rate about the z-axis. Interestingly, the above noticable absence
of periodicity in altitude is intuitively consistent.

Finally, notice the high levels of noise (corresponding time signals are shown in Figure
41) which is consistent with independently measured signal to noise ratios discussed in more
detail in Appendix. The interested reader is referred to the Appendix sections for more
discussions concerning the results and algorithms used to determine output noise models,
analytical and identified models. The algorithms used were successfully validated on simu-
lated data before application to actual experimental data.

5.2.5 Uncertainty structure

Figure 25 shows the interconnections of the uncertainty model and the equivalent output
noise model to the inner loop PD controller, K, and the outer loop controller, C. The
uncertainty model chosen consists of a multiplicative uncertainty at the output of the inner
loop PD controller. A bounded but unknown equivalent noise, ν, is chosen as additive at the
output of the inner loop PD controller and is filtered by output sensitivity and normalizing
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diagonal filter V . The nominal model consists of the transfer function matrix from command
input r to the closed inner loop output of the plant y, i.e., (I − PK)−1P . The simplified
uncertainty structure chosen along with a zero input disturbance allowance gives the following
augmented plant:

{
η
y

}
=

[
0 [0, 0] (I − PK)−1P
I [0, Vn] (I − PK)−1P

]
︸ ︷︷ ︸

G(P,K,V )




ξ(
ε
ν

)
r




where Vn := (I−PK)−1V . Notice from the above augmented plant that because [G11, G12] =
0, the feasibility test for model validation of this particular connection of uncertainty struc-
ture and noise model is convex which greatly simplifies the subsequent numerical optimization
problem. Notice that this sufficient condition is easily violated, if for example an equivalent
input noise is defined at the input, to go with the output multiplicative uncertainty, i.e.,
G12 �= 0.
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Figure 25: Uncertainty model interconnection about a level flight trim for Ducted fan.

5.3 Smallest unmodeled dynamics for model validation

Consider the problem of finding a smallest model validating output multiplicative uncertainty
given an output noise allowance, consisting of the product of the fitted noise filter, V , shown
in Figure 24, and an output sensitivity filter. In this study, an output sensitivity filter is
constructed by forming the product, I3×3 + TyrK where Tyr is an identified model of the
inner loop across plant and K is the given inner loop PD controller (for more details please
see Appendix). As discussed earlier, this question can be posed as an optimization problem
involving a linear cost function subject to a set of linear matrix inequality constraints at
each frequency:

min
z

cT z

subject to

[
Qiz − ‖ξo,i‖2 sym

Siz I

]
> 0, i = 1, . . . , τ[

b2o sym
Lz I

]
> 0

where z := [Re(ψ); Im(ψ); Re(φ); Im(φ);x2] ∈ R2nψ+2nφ+1, and the set of constants c, Qi, Si,
and L are defined in equation 22, bo is defined in equation 9, and ξo,i is the ith uncertainty
component of ξo which is defined in equation 11. For unstructured uncertainty case, τ = 1,
while for diagonal uncertainty case, τ = 3.

The interior-point algorithm found in MATLAB’s LMI Toolbox [20] is used to solve for
the global minimum. With multiplicative uncertainties for all output channels, the existence
of a model validating set is obviously not in question and the interest lies in determining the
necessary magnitude level and frequency shape of the unmodeled dynamics (which implicitly
includes some unknown level of contribution from parametric errors in the nominal model).
Table 3 show the various cases considered which arises from a combination of nominal model,
assumed uncertainty structure, and a choice on the level of output noise allowance based on
a factor of fitted noise spectrum.
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Case Nominal Uncertainty str Noise
Exp1-2-D Analytical Diagonal .5× fitted
Exp1-3-D Analytical Diagonal fitted
Exp1-4-D Analytical Diagonal 2× fitted
Exp4-2-D Identified Diagonal .5× fitted
Exp4-3-D Identified Diagonal fitted
Exp4-4-D Identified Diagonal 2× fitted
Exp1-2-F Analytical Unstructured .5× fitted
Exp1-3-F Analytical Unstructured fitted
Exp1-4-F Analytical Unstructured 2× fitted
Exp4-2-F Identified Unstructured .5× fitted
Exp4-3-F Identified Unstructured fitted
Exp4-4-F Identified Unstructured 2× fitted

Table 3: Cases considered for computing smallest output multiplicative uncertainty.

Figure 26 shows the smallest model validating diagonal output multiplicative uncertainties
based on analytical and identified nominal models. Assuming unstructured output multiplica-
tive uncertainties instead, Figure 27 shows the smallest model validating maximum singular
values of the uncertainties based on analytical and identified nominal models. The effects
of using different levels of equivalent output noise allowances are also shown: the diamond
solid line denotes uncertainties obtained based on a unit factor of fitted noise allowance, the
triangle dotted line is based on twice the fitted noise allowance, and the square dotted line
is based on half the fitted noise allowance (refer Table 3). Based on the results in Figures
26 and 27 we make the following observations:

1. Larger noise allowance leads to smaller model validating unmodeled dynamics. How-
ever, at twice the fitted noise allowance, the identified nominal model case gives unreal-
istically small levels of unmodeled dynamics (say 1 % or less at many frequency points).
This also means that the validation was likely achieved mostly with noise allowance,
which could lead to unrealistic predictions of robust stability.

2. Identified nominal model cases resulted in smaller uncertainty levels than analytical
nominal model, for both types of uncertainty structure and three different noise al-
lowance levels. Since the uncertainty ball of the identified nominal model is smaller
than that of analytical nominal model, the identified nominal model appears to be more
accurate than the analytical nominal model. This result is consistent with the earlier
prediction error analysis of nominal models.

3. The maximum singular value of the unstructured uncertainty cases resulted in smaller
uncertainty levels than structured uncertainty cases (its maximum over all channels).
This is not surprising since unstructured uncertainty has a larger number of uncertainty
components than diagonal uncertainty. However, a smaller normed uncertainty set do
not necessarily imply a smaller set of plants if the number of uncertainty components
are different.

4. At lower frequencies, say < 2 rad/sec, smaller uncertainty levels are required for both
types of nominal model and uncertainty structure. This may be due to the following
reasons:

• The frequency responses of both analytical and identified nominal models have
larger gains at lower frequencies (see Figures 53), and the multiplicative uncer-
tainty at output represents a factor of these responses.
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• The nominal model is actually more accurate at lower frequencies; for example,
the analytical and identified transfer functions from δp to θ match better at lower
frequencies between .1 to 2 rad/sec then over 2 to 30 rad/sec range (see Figure
22).

• The use of a larger noise allowance at lower frequencies which inadvertently can re-
duce model uncertianty level. A larger identified noise spectra at lower frequencies
is indicated in Figure 24.
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Figure 26: Smallest diagonal output multiplicative uncertainty about analytical (left) and identified
(right) nominal models: noise allowances of .5× fitted (dash), fitted (solid), 2× fitted (dot).

In summary, the above model validating uncertainty levels obtained from experimental
data for the Ducted fan is not small. Simulation results (see Appendix for details) also
indicate that these results can be sensitive and therefore unreliable in the presence of a high
level of noise in data, exactly, what was observed in dealing with measurement data. This
large uncertainty level appears to be due to two reasons:

1. significantly inaccurate nominal models which is evident from early prediction error
analysis of both models, and

2. large exogenous disturbance and noise which is evident from earlier construction of
noise models which causes DFT errors from nonperiodicity.

We have also shown that this lack of periodicity cannot be eliminated by innovative tapered
time windowing. In fact, simulation studies indicate that with a high level of noise in data,
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Figure 27: Smallest unstructured maximum singular value of the output multiplicative uncertainty
about analytical (left) and identified (right) nominal models: noise allowances of .5× fitted (dash),
fitted (solid), 2× fitted (dot).

it is difficult to recover the correct model error, even with an accurate nominal model and
correct uncertainty structure. On the other hand, simulation studies also suggests that
incorrect or indeterminate uncertainty structure do not preclude satisfying model validation
conditions. For example, assuming unstructured uncertainty when the correct model error
is diagonal resulted in a smaller normed unstructured uncertainty (when compared to the
norm of true diagonal model error), exactly what was observed in dealing with measurement
data. Nevertheless, since the important property of an uncertainty model is in its predictive
capability of closed loop performance rather than its particular uncertainty structure or
size, we next show the results of its predictive capability of closed loop performance for an
independent outer loop controller.

69



5.4 Performance validation analysis

In this section, we show comparisons between measured worst case performance and various
predicted performance bounds based on corresponding model validating uncertainty sets.
The measured worst case performance is defined here as the maximum possible closed loop
amplification over bounded signals. In contrast, the predicted performance bounds are based
on the predicted worst case signal amplification over a corresponding model validating set
of plants. Closed loop refers to a second controller loop with C around the inner controller
loop involving K. In the Ducted fan, the inner loop controller was necessary since the open
loop was marginally unstable to collect data for system identification.

Figure 28 illustrates how closed loop performance can be validated. The idea is that the
measured worst case disturbance amplification of the closed loop system is bounded by (or
comparable to) the predicted worst case disturbance amplification based on an uncertainty
model. This predictive capability is an important necessary characteristic of a useful uncer-
tainty model in the context of robust control. The predicted worst case performance for a
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Figure 28: Performance validation schematic for Ducted fan: predicted versus measured
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given nominal and uncertainty model is illustrated in Figure 29 where skewed-µ [1] is defined
at each frequency and is given by

µs := {min ρ : det (I −R(ρ)M(P,K, V, C)∆BW ) = 0, σ̄(∆B) ≤ 1}−1 (25)
= max

σ̄(∆unc)≤1
∆unc∈D

σ̄ [WperfFu(M(P,K, V, C),∆uncWunc)] (26)

where

R(ρ) :=

[
Iunc 0
0 ρIperf

]

M(P,K, V, C) := Fl

([
I

I

]
G(P,K, V )[I, I], C

)
G(P,K, V ) denotes the augmented nominal system consisting of the inner loop whereas
M(P,K, V, C) denotes the nominal closed loop system with the second controller. Equation
(26) indicates that µs denotes the worst case maximum singular value frequency response at
a given frequency. This worst case is over the uncertainty model set, D, while the maximum
singular value reflects the multivariable nature of input and output signals and its spatial
dependence. Equation (25) connects µs to the more well known µ which is typically used to
compute the former by a scaling procedure described in more detail for example in [1].
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Figure 29: Computation of worst case performance from r to y (top), canonical form (middle),
performance channel scaled and closed (bottom).

From equation 26 and middle figure in Figure 29, note that µs includes a directional worst
case with respect to unknown exogenous inputs, β. For performance validation purposes,
this is a bit difficult to experimentally measure the worst case responses with respect to
unknown exogenous inputs. Hence, although mathematical models for the exogenous noise
are available, we consider only the measurable worst case response from command input, r,
to measured output, y, corresponding to the µs with performance from r to y only. Therefore,
the following performance validation results do not include the responses due to unknown
exogenous signals, which is known to be significant. Furthermore, since it is a non trivial
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matter to test all possible command inputs in the hope of directly measuring the worst case
signal amplification, we circumvent this by identifying an empirical model of the closed loop
system with the goal of computing the maximum singular value of its empirical frequency
response matrix, resulting in an indirect measurement of worst case directional response.

Figure 30 shows a comparison of the measured worst case response (line), to the predicted
responses: nominal (dash), µs based on structured uncertainty (line-circle) and unstructured
uncertainty (line-square). These predicted responses are based on an analytical nominal
model. Figure 31 shows similar comparisons but its predicted responses are based on an
identified nominal model. Both predicted responses are based on an assumed noise allowance
of fitted noise with factor 1. Based on the results in Figures 30 and 31, we make the following
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Figure 30: Worst case response from r to y with noise allowance fit factor 1: analytical nominal
model with diagonal and unstructured uncertainties.

observations:

1. Without using uncertainty models, the predicted performance based on identified nom-
inal model (dash line in Figure 31) gives a much better match with measured response
(solid line) than performance based on analytical nominal model (dash line in Fig-
ure 30). This is consistent with both pervious analysis of uncertainty size levels and
prediction errors. Most prominently, the analytical nominal model predicts an overly
pessimistic response at lower frequencies and overly optimistic response at higher fre-
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Figure 31: Worst case response from r to y with noise allowance fit factor 1: identified nominal
model with diagonal and unstructured uncertainties.

quencies beyond 2 rad/sec. On the other hand, the identified nominal model predicts a
slightly optimistic response at most frequencies except over a narrow bandwidth within
1 and 2 rad/sec (see Figure 31).

2. Using uncertainty models, the predicted worst case response (i) worsens the pessimism
at lower frequencies but improves the overly optimistic prediction at higher frequencies
for the analytical nominal model case (dot and dash-dot lines in Figure 30), and (ii)
improves the slightly optimistic prediction at lower frequencies but worsens the slightly
optimistic prediction at higher frequencies for the identified nominal model case (dot
and dash-dot lines in Figure 31). Since errors at lower frequencies (say < 2 rad/sec)
dominate and therefore its prediction more significant, we infer that using uncertainty
models improved the identified nominal mode based prediction while it increased the
conservatism of the analytical nominal model based prediction.

3. The predicted worst case performance locally peaks and then drops significantly to
the predicted nominal levels between 1 to 3 rad/sec. The local drop in worst case
performance corresponds to the large resonant noise allowance (Figure 24) leading to
smaller model validating unmodeled dynamics. Conversely, the local peaks of the worst
case performance (Figures 30 and 31) correspond to a local drop in the noise allowance
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(Figure 24) leading to larger model validating unmodeled dynamics. This is a result
of treating noise as a given allowance in computing the minimum unmodeled dynamics
necessary to satisfy model validation conditions.

4. The deviation of predicted responses based on identified nominal model (dot and dash-
dot lines in Figure 30) is significantly less from its corresponding nominal predicted
response than the deviation of the predicted responses based on analyical nominal
model (dot and dash-dot lines in Figure 31) to its corresponding nominal predicted
response. This smaller deviations of predicted responses is consistent with the smaller
sizes of the model validating uncertainties for the identified nominal model case.

5. The deviation of the predicted responses based on unstructured uncertainty (dotted
lines) from the predicted nominal response is significantly smaller than the correspond-
ing deviation based on diagonal uncertainty (dash-dot lines) for both types of nominal
model. This deviation is particularly large in the analytical nominal model based pre-
dictions at lower frequencies; perhaps the assumed diagonal uncertainty structure could
not easily account for a large coupled dynamics error that occurs for a analytical nomi-
nal model. Based on comparisons to measured responses (solid lines), the unstructured
uncertainty (dotted lines) appears to be more suitable for use with analyical nominal
model while the diagonal uncertainty (dash-dot lines) appears to be more suitable for
use with identified nominal model.

Figures 32 to 35 show the effects of varying levels of noise allowances (.5, 1, 2) of fitted
noise, on the closed loop performance, for both types of nominal models and both types of
uncertainty structure. The measured worst case is shown as a reference by a solid line.
From the four figures, note the following observations:

1. With increasing noise allowance (from dot to dashdot to dash lines), the level of un-
modeled dynamics decreases and the predicted worst case response decreases for both
types of nominal models and uncertainty structures.

2. Varying the noise allowance levels did not significantly improve the overly pessimistic
predictions based on analytical nominal model (Figures 32 and 33) mainly because
the level of pessimistic predictions dominates. However, note that with the use of
smaller noise allowance (.5), the prediction based on analytical nominal model at higher
frequencies (say > 2.5 rad/sec) matched the measurement more closely, although less
significant.

3. Using a noise allowance level of 1.0, the predicted response, based on identified nominal
model with diagonal uncertainty (Figures 34), closely matched the measured response.
In contrast, this “correctly” scaled noise allowance level of 1.0, did not appear to give
better results if unstructured uncertainty is used (Figure 35).

4. The predicted worst case responses based on unstructured uncertainties (Figures 33
and 35) appears to be less sensitive to noise allowance levels for either type of nominal
model than diagonal uncertainties (Figures 32 and 34).

As a summary based on the above observations, the predicted worst case closed loop perfor-
mance based on a model validating diagonal uncertainty about the identified nominal model
with the more realistically scaled noise allowance (i.e. fit factor of 1.0), gave the closest
match to the maximum singular value of the identified closed loop system at lower frequen-
cies where the outputs were largest. The presence of a high level of exogenous disturbances
due to unknown unsteady aerodynamics, concentrated near the rotation frequency of about
2.5 rad/sec, is a significant obstacle in the uncertainty level determination methodology and
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Figure 32: Worst case response from r to y for analytical nominal model with diagonal uncertainty:
effects of noise allowances .5 (dot), 1 (dashdot), 2 (dash), and measured (solid).

subsequent performance validation near this frequency. On the other hand, unknown dis-
turbances always present in physical systems is always a limiting factor in model validation.

Despite some success in the above performance predictions, the selection of a set of uncer-
tain parameters and structure of unmodeled dynamics is not completely clear. Furthermore,
any particular uncertainty parameter and structure that leads to a model validating set is
likely to be redundant and there is no clear “best” selection suggested by the physics of
the Ducted fan testbed. Nevertheless, experimental results appended by simulation results
suggest that it may not be necessary to know the “correct” uncertainty structure, to obtain
uncertainty models that are useful for robust control applications.

Finally, the limitations of the results and scope of this study is noted that further research
could address. This includes (i) performance validation is limited to worst case response
comparisons based on maximum singular values and could be extended to gain and phase
variations of each input-output channel, (ii) a procedure for the performance validation
involving the worst case unknown exogenous disturbance and noise is not clear and therefore
not considered, (iii) an improved procedure for obtaining an equivalent output noise model
from closed loop measurements is desirable, and (iv) techniques for distinguishing exogenous
random noise from model error effects from limited closed loop response data is desirable.
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Figure 33: Worst case response from r to y for analytical nominal model with unstructured uncer-
tainty: effects of noise allowances .5 (dot), 1 (dashdot), 2 (dash), and measured (solid).
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Figure 34: Worst case response from r to y for identified nominal with diagonal uncertainty: effects
of noise allowances .5 (dot), 1 (dashdot), 2 (dash), and measured (solid).
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A Ducted Fan in level flight

A schematic of the Ducted Fan is described in Figure 36 and Figure 37. (0, X, Y, Z) is an iner-
tial coordinate system, (Os, Xs, Ys, Zs) a stand center of mass, body fixed coordinate system,
(Ob, Xb, Yb, Zb) a shroud center of mass, body fixed coordinate system, and (Ow, Xw, Yw, Zw)
the wind coordinate system. ψ is the angle between [OX) and the projection of [OsXs) on

ψ
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YsOs

Xb Zb

YbOb

boom
paddles
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elevator
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O
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win
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Figure 36: Ducted Fan Body

the plane (XOY ), θ, the pitch axis angle i.e. the angle between the local horizontal [OsXs)
and the [ObXb) axis and z the algebraic distance OOs. The airspeed at the center of mass

of the ducted-fan (shroud+wing+boom) is denoted by Vs = ψ̇
rs

, the angle of attack by αs,
the flight path angle by γs, the paddle angle by δp, the elevator angle by δe and the motor
voltage by Vm. Subscripts s and w denote variables related to shroud and wing respectively.
The Lagrange’s equations of motion are given by

IsZψ̈ = −rsF s
Xs − rwF

w
Xs − rbF

b
Xs − θ̇IpXbΩ cos θ (27)

(mb +mf +
mc

r2
)z̈ = mg + F s

Zs + Fw
Zs + F b

Zs (28)

IfYbrθ̈ = M s
Ys +Mw

Ys + IpXbψ̇Ω cos θ (29)

where IsZ is the moment of inertia of the fan, boom and counterweight about OZ; IfYbr,
the moment of inertia of the fan about ObYb when wing in rearward position; IpXb , the

moment of inertia of the propeller and the motor about ObXb; F
b
Xs

, the Xs component of the
boom aerodynamic force; Fw

Xs
and Fw

Zs
, the Xs and Zs components of the wing aerodynamic

force; Mw
Ys

, the Ys component of the wing aerodynamic moment; F s
Xs

and F s
Zs

, the Xs and
Zs components of the shroud aerodynamic force; M s

Ys
, the Ys component of the shroud

aerodynamic moment; rb, the effective moment arm for the boom; rw, the effective moment
arm for the wing; rs, the distance between Ob and the plane XOZ; mb the mass of the boom;
mc, the mass of the counterweight; mf , the mass of the fan; r, the pulley gear ratio; g, the
gravity and Ω the motor velocity; m := mb +mf − mc

r
.

79



δp

δp

δe

γ

α

θ

Xb

Zb

Ob

Xw

Zw

Xs

Z s

Air F
V

Figure 37: Shroud and Wing Conventions

Boom and wing aerodynamics Due to the rotation of the fan, the wing will experience
increasing velocities from its root. A similar situation occurs for the boom. The aerodynamic
forces of the wing and boom may be written as:

F b
Xs = F b

Xs(ψ̇, ż, CDb)

Fw
Xs = Fw

Xs(ψ̇, ż, C
w
D, C

w
L )

Fw
Zs = Fw

Zs(ψ̇, ż, C
w
D, C

w
L )

Mw
Ys = Mw

Ys(ψ̇, ż, C
w
M , C

w
D, C

w
L )

where CDb is the drag coefficient of the boom (cylinder) and Cw
D, Cw

L and Cw
M , determined

by a series of wind tunnel tests, are functions of αw and δe. For now, the effects of all other
derivatives are assumed negligible.

Shroud Forces and Moments There are two contributions to the shroud aerodynamic
forces and moments: the thrust from the ducted fan engine and the aerodynamic forces of
the shroud. In order to determine the shroud forces F s

Xs
and F s

Zs
, and moment M s

Ys
, four

2-D table lookup (F sT
Xb

, Cs
D, Cs

L and Cs
M) as a function of αs, Vm or δp are necessary.

Motor Speed A 2-D table lookup, function of Vm and δp, will be used to determine the
motor velocity Ω. The effects of V and α are neglected.

The actuators are assumed to be perfect and the moments of inertias of the fan (shroud
and wing) and the propeller about (ObXb) and (ObZb) are neglected.
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A.1 Linearized, unstable model about trim

A ducted fan analytical model can be described from equations 27 to 29 by a set of first
order ODEs ẋ = f(x, u) where xT = [V, z, ż, θ, θ̇] and uT = [Vm, δp, δe] where V := ψ̇rs
and rs = 2.35 is the radius in meters to convert angular to linear velocity. Although the
horizontal linear distance navigation variable, ψrs which is the integral of V , is not necessary
as a state, the navigation variable, z, is necessary to control the altitude during experiments
since the vertical movement is constrained by the testbed. Figure 21 is a schematic of the
linearization about a trim point. A trim condition at level flight is obtained by solving
the above non-linear algebraic equations at a forward flight velocity, Vo = 6 m/s, and zero
altitude, z, and elevator deflection, δe, for the pitch angle θ, the motor voltage Vm, and the
paddle angle δp. In other words, the trim conditions satisfy the following conditions:

xTtrim = [Vo, 0, 0, θtrim, 0] , uTtrim = [Vmtrim , δptrim , δetrim ] , f(xtrim, utrim) = 01×5

By computing the Jacobian of f about the trim point a perturbed linear model was
obtained about, V = 6 m/s, z = 0 m, θ = 9.8104 deg, Vm = 1.0927 Volt, δp = −9.1725 deg,
δe = 0 deg, using (linmod.m) with the following results:

d

dt




δV
δz
δż
δθ

δθ̇


 =




−0.0698 0 −0.0269 −0.7696 0
0 0 1.0000 0 0

−0.1984 0 −0.6141 −3.6847 0
0 0 0 0 1.0000

−0.0881 0 −0.1544 −0.8899 0







δV
δz
δż
δθ

δθ̇


+




0.5569 −0.0088
0 0

−0.0344 −0.1432
0 0

0.7034 −2.3021



(
δVm

δp

)

y :=


 δψ̇

δz
δθ


 =


 −1/rs 0 0 0 0

0 1 0 0 0
0 0 0 1 0






δV
δz
δż
δθ

δθ̇




Table 4 show the eigenvalues and eigenvectors of the linear continuous time plant model.
This model predicts the following:
λ1: rigid body mode in z-axis

λ2,3: (stable, unstable) pair of slow (ω = .02 Hz) z-ψ̇ axes coupled mode; Phugoid motion

λ4,5: damped oscillating (ω = .15 Hz, ζ = .35) θ-z-ψ̇ axes coupled mode

λ1 λ2 λ3 λ4,5

Degree-of-Freedom 0 -0.1195 0.1370 -0.3507 ± 0.9127i
δV 0 0.0989 0.1060 -0.0637 - 0.1177i
δz 1 0.9880 0.9846 -0.6390 + 0.2532i
δż 0 -0.1181 0.1349 -0.0070 - 0.6721i
δθ 0 0.010 -0.0332 -0.1625 + 0.0561i
δθ̇ 0 -0.0013 -0.0045 0.0058 - 0.1680i

Table 4: Eigenvalues and eigenvectors of the unstable, continuous, analytical model.

The encoders directly measure ψ, z and θ, and a filter is used in the ψ channel to estimate
its velocity. Hence the measured outputs are assumed to be dψ

dt
, z and θ, about trim. This

derivative filter inevitably introduces a phase lag which we ignore for simplicity. In addition,
the encoder outputs and actuator inputs are sampled and held at 100 Hz. This sampling rate
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appears sufficiently fast to mitigate aliasing effects with the implementation of a digital anti-
aliasing filter having a break frequency of 5 Hz. The filter was designed after preliminary
testing and analysis of an analytical model of the Ducted fan which indicated that the
system’s significant dynamics was limited to about 2 Hz and it was decided that a discrete
time controller will be designed and implemented at 20 Hz. A small phase lag introduced
by this filter was deemed a good tradeoff to mitigate alliasing effects in the feedback loop
during controller implementation.

Finally, it turns out that the above trim point is marginally unstable (or stable ?) and a
stabilizing controller is required to collect any reasonable length of measurement.

A.2 Truth plant model and controller for simulation

The previous unstable analytical plant model is taken as the unknown true plant for gen-
erating simulated data. A truth plant model is defined for the purpose of simulation study
only and is intended to define a particular idealized physical system and is assumed to be
uniquely defined by a given mathematical model. 4 The main goal in this section is to deter-
mine how well (and validate) system identification algorithms recover a given true plant from
simulated measurement data, before we consider actual measurement data. Although the
physical states in general cannot be recovered through system identification, we identify and
compare coordinate invariant physical properties such as plant eigenvalues and input-output
maps such as frequency response. In addition, since the measured outputs are physical
variables, a physical interpretation of the mode shape is possible.

The truth plant model is discretized at 20 Hz, which corresponds to the sampling rate
of an actual laboratory experiment. The following Proportional-Derivative (PD) controller
discretized at 20 Hz is used in the generation of the subsequent closed loop simulation data.


x1

x2

x3

x4




k+1

=




0.441 0.013 0 0
−13.110 −0.148 0 0

0 0 0.441 0.013
0 0 −13.110 −0.148






x1

x2

x3

x4




k

+




0 0.558 0
0 13.110 0
0 0 0.558
0 0 13.110




 δψ̇

δz
δθ




k

(
δVm

δp

)
k

=
[

0 0 0 0
0 −0.014 0 0.226

]
x1

x2

x3

x4




k

+
[

1.703 0 0
0 −0.047 1.131

] δψ̇
δz
δθ




k

This controller consists of two separate feedback loops, namely, the first input δVm feeds
back only δψ̇ while the second input δp feeds back a linear combination of δz and δθ. The first
input is designed to regulate the constant rate rotation by providing a negative proportional
feedback on the deviation of the flight velocity about trim while the second input is designed
to stabilize and regulate both its attitude and altitude. It is physically significant to note
that this particular controller actually stabilizes the Ducted fan in a laboratory experiment.
The closed loop performance of this PD controller is used as a baseline to validate the
performance of an independent controller in an outer loop.

4However, in many physical systems which are of engineering interest, a “true” plant defined by a unique math-
ematical model may not exist. Hence, much debate revolves around the mismatch between measured data and that
predicted by various “true” mathematical models, which motivates voulmnous previous work in areas such as system
identification, model validation, robust control and countless related experiments.
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A.3 Comparison of analytical model response to measurement

To get an idea of the accuracy of the analytical model, we compare the spectra of the
measured closed loop output (input) to the predicted closed loop output (input) from the
analytical model driven by the same test signal used in the experiment. The unstable
analytical plant model with the PD controller used in the experiment is stable in closed
loop. No unknown noise or disturbance is assumed in the simulated response.

Figures 38 and 39 show measured (solid) and predicted (dash) magnitude spectra of the
closed loop outputs and inputs, respectively. Specifically, note that
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Figure 38: Measured magnitude spectra of PD closed loop output vs analytical model prediction

• The first channel in the measured output, δdψ/dt, and the fan voltage input, Vm, show
resonant peaks at about 2.5 rad/sec which corresponds to the nominal rotation rate of
the Ducted fan about the z-axis, i.e., dψ/dt = V/rs = (6m/s)/(2.35m) = 2.55 rad/sec.
There also appears to be higher harmonic resonant peaks at about 5 and 10 rad/sec.

• The discrepencies, as a percentage of its nominal response in the output spectra, is
generally larger with increasing frequencies. This is likely due to the combination of (i)
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Figure 39: Measured magnitude spectra of PD closed loop inputs vs analytical model predictiction

a less reliable analytical model at higher frequencies and (ii) the presence of wideband
noise which plays a more prominent role at higher frequencies where the plant rolls off.

In summary, there are significant discrepencies between the spectra of the measured closed
loop output and the output simulated from an analytical model in all five channels. Note
that similarities in the spectra magnitudes may appear more optimistic than it actually is
since their phases could be totally off. Hence, the figures also show the magnitude of the
differences in their complex spectra (dot). To get some feel for model errors from these
signals, we compute the following signal ratios

‖ymeas − ysim‖
‖ysim‖ � σ̄(∆out mult)

‖ymeas − ysim‖
‖r‖ � σ̄(∆add)

which are given in Figures 40. The above ratios roughly approximates a lower bound on the
2-norm of a complex 3 by 3 full-block output multiplicative uncertainty and the 2-norm of a 3
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Figure 40: Ouput difference signal ratios.

by 2 additive uncertainty, respectively. The figure shows that the multiplicative uncertainty
increases with frequency while in the additive uncertainty it decreases. This makes sense
because the multiplicative uncertainty is a factor of the noiminal plant which rolls off as
indicated by the maximum singular value frequency response of the closed loop system using
analytical plant model (dotted line).

To get a feel for the noise and disturbance levels in the system, Figure 41 shows the
measured closed loop time histories when the system is forced (left column) and free (right
column). Clearly, the system is very noisy particularly in the forward motion (first channel).
The perturbed forward motion (δdψ/dt), in both the forced and free closed loops matche the
rotation rate about the z-axis. This is more evident from an estimated equivalent output
noise spectrum which show peaks whose frequency matches the z-axis rotation rate of the
Ducted fan. By flying through its own wake periodically, the resulting turbulent aerodynamic
forces will depend on past control input histories (fan speed and vector thrust angle) and
current attitude and position. This causes the exogenous output noise to be correlated to
both input and output variables which will cause unknown bias errors in the identification
of an empirical model. In addition, a vertical drift or a very slow oscillation is also present
in the z plot of free response.

In summary, a large discrepency exists between the predicted spectra from the analytical
model and measured data which suggests a significant level of inaccuracy in the analytical
model. Furthermore, the unknown noise and disturbances in the system appears significant
indicating that an empirical nominal model development through system identification may
not be trivial, and properly accounting for unknown exogenous disturbances in any validation
process is clearly important. Of course, the accuracy of any analytical model of the Ducted
fan depends on the assumptions made about the physical system during model development.
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Figure 41: Forced (left column) and free (right column) closed loop output measurements.

A partial list of these assumptions involve:

• inertial properties, dimensions, and center of gravity location, . . .

• nature of friction, energy dissipation mechanism, stiction, between rotating parts, . . .

• structural flexure in the composite boom, suporting cables, gears, . . .

• aerodynamic models

– boom aerodynamics, F b
Xs

(ψ̇, ż, CDb)

– wing aerodynamics, Fw
Xs

(ψ̇, ż, Cw
D, C

w
L ), Fw

Zs
(ψ̇, ż, Cw

D, C
w
L ), Mw

Ys
(ψ̇, ż, Cw

M , C
w
D, C

w
L )

– shroud aerodynamics, F s
Xs

, F s
Zs

, M s
Ys

• motor velocity dependence, Ω(Vm, δp)

• wall and turbulent wake effects on aerodynamics

• uncertainties in tabulated component wind tunnel test data

Therefore, the Ducted fan is difficult to model accurately with confidence because it is
difficult or near impossible to verify all the assumptions related to the above list.
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A.4 Identified models from simulated data

In this section, we investigate whether an empirical model obtained directly from experimen-
tal data can reduce the significant discrepency that exists for the analytical model. We show
system identification results based on simulated data to validate the identification method
which is subsequently applied to experimental data. Based on both simulation and exper-
imental results, we discuss inherent limitations in the system identification approach. All
closed loop simulated data in this chapter is generated from an assumed unstable analytical
truth model with a known PD control law.

A.4.1 System identification algorithm

We briefly outline a popular a time domain identification method called the Subspace Model
Identification (SMI) [25, 26] which we use to obtain all subsequent system identification
results in this report. The identification software SMI Toolbox Version 1.0 was obtained
from [27]. The SMI method is based on approximating structured subspaces of observability
matrix from input-output data and then directly realizing state space matrices from the data
equation with the aid of a shift-invariant property of the observability matrix. An output-
error state space structure is assumed as shown in Figure 42 which also covers black-box
models such as ARMAX and OE [5]. The following is a description of the ordinary MOESP

Unknown
Deterministic
System

Noise Shaping

Filter

Σ

zero-mean white noise

OutputInput

colored noise

Figure 42: Output Error State Space model identification (MOESP) setup.

algorithm in a nutshell:

1. Suppose we have measured input and output data sequence from time index j to
(j +N + i− 2)

[uj, . . . , uj+N+i−2] , [yj, . . . , yj+N+i−2] uk ∈ Rm yk ∈ Rl

2. Assume that this finite segment of the data sequence satisfy the noise-free LTI relation

Assumption 1: xk+1 = Axk +Buk, yk = Cxk +Duk
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meaning that the following data equation holds:


yj yj+1 . . . yj+N−1

yj+1 yj+2 . . . yj+N
...

. . .
yj+i−1 yj+i . . . yj+N+i−2




︸ ︷︷ ︸
Yj,i,N

=




C
CA
...

CAi−1




︸ ︷︷ ︸
Γi

[
xj xj+1 . . . xj+N−1

]︸ ︷︷ ︸
Xj,N

+




D 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
. . .

...
CAi−2B . . . D




︸ ︷︷ ︸
Hi




uj uj+1 . . . uj+N−1

uj+1 uj+2 . . . uj+N
...

. . .
uj+i−1 uj+i . . . uj+N+i−2




︸ ︷︷ ︸
Uj,i,N

(30)

3. To obtain an approximation to column space of Γi, assume the following:

Assumption 2: (A,B,C,D) is minimal of order n
Assumption 3: i > n

Assumption 4: rank

[
U1,i,N

X1,N

]
= mi+ n

and a RQ factorization of the fat (by assuming a sufficiently long measured time seg-
ment, i.e., a large N) data matrix pair is computed[

U1,i,N

Y1,i,N

]
=

[
R11 0
R21 R22

] [
Q1

Q2

]
where R11 and R22 are lower triangular matrices and the rows of Q1 and Q2 are or-
thonormal. With Assumptions 1 to 4, it can be shown that Image(R22) = Image(Γi)
and an orthonormal bases for Image(Γi) can be computed from the SVD

R22 =
[
Un U⊥

n

] [ Sn
S2

] [
V T
n

(V ⊥
n )T

]

4. The orthonormal base matrix, Un, which is related to the unknown observability matrix,
Γi by Un = ΓiT where T is an unknown square nonsingular matrix, can be used to com-
pute state and output matrices AT and CT using a structural property of observability
matrix 


C
CA
...

CAi−2




︸ ︷︷ ︸
Γ

(1)
i

A =




CA
CA2

...
CAi−1




︸ ︷︷ ︸
Γ

(2)
i

(31)

Since T is square and nonsingular, the above “shift-invariant” property can be rewritten
as

Γ
(1)
i T︸ ︷︷ ︸
U

(1)
n

(T−1AT )︸ ︷︷ ︸
AT

= Γ
(2)
i T︸ ︷︷ ︸
U

(2)
n
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so that AT can be computed uniquely since U
(1)
n has full column rank per assumptions

2 and 3. The corresponding output matrix, CT , can be determined by noting that Un
is the observability matrix in transformed coordinates and therefore the partitioned
matrix consisting of the first l-rows of Un is CT .

5. Notice from the noise-free data equation (30) that if A and C are known, the only
unknowns are B and D which appears linearly. Hence, after some algebraic gymnastics
[25], one can obtain the following overdetermined equation ((li − n)i × m equations
with (m+ n) ×m unknowns)
 Ξ(:, 1 : m)

...
Ξ(:,m(i− 1) + 1 : mi)


 =


 U⊥

n (1 : l, :)T . . . U⊥
n (l(i− 1) + 1 : li)T

...
...

U⊥
n (l(i− 1) + 1, :)T . . .


[ Il 0

0 U
(1)
n

] [
D
BT

]

where Ξ := (U⊥
n )

T
R21R

−1
11 , and a least squares solution of BT and D can be obtained.

It is important to note that a least squares solution will result in satisfying only ap-
proximately both the shift invariant property, equation (31), and the noise-free data
equation (30) and this limitations on model accuracy is unclear.

Overall, SMI approach is computationally easy but the performance of the method is un-
proven under noise and disturbance (SMI is a deterministic approach), nonperiodic test
signal, uncertainty in the assumed minimal order of the state. Various recent work reported
in IFAC’s Symposium on System Identification SYSID 2000 [15] is a testament to the high
level of interest in this particular identification method. Hence, before we consider experi-
mental data, we evaluate this algorithm using simulated data.

A.4.2 Identified models of (I −KP )−1 from simulated data

Simulated data containing low (variance σ = 10−8) and high (variance σ = .03) measurement
noise levels are considered. The simulated high noise level roughly approximates the actual
measurement noise levels in terms of signal to noise ratio. In the system identification
simulations for the high noise level cases, 100 minutes of data (or 29 signal samples each
approximately 3.4 minutes duration sampled at 20 Hertz) are assumed while for the low noise
level cases only 20 minutes of data (or 5 signal samples) are assumed. In actual experiments,
the measurement data is 20 minutes duration.

Figure 43 shows the singular values which help determine suitable orders for the input
sensitivity state space model corresponding to low (left figure) and high (right) noise cases.
In both cases, a (carefully selected at) random upper bound order of 18 is chosen to compute
the singular values of the Hankel matrix. Notice from the low noise case (left figure) that
nine singular values corresponding to the true closed loop system states stands out because
of the very low noise floor. This is in sharp contrast to the high noise case (right figure)
where the high noise floor conceal states beyond the first five.

In the low noise case, it was found that although the largest singular value gap occurs after
the first nine states, thus suggesting a natural reduced order, both 9 and 8th order realizations
were unstable and the largest stable realization order was 7. In the high noise case however,
the largest singular value gap occurs after the first five states but this gap is relatively small.
Therefore in both cases, all 9 states of the truth model was not recovered. In retrospect,
this limitation is expected in most nontrivial applications in system identification where the
lesser observable and/or controllable states are difficult to recover due to their relative lack
of participation in the output signal.

Figures 44 and 45 show the frequency responses for the true and identified 7th order
input sensitivity model corresponding to low and high noise cases respectively. The dash
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Figure 43: Singular values to determine order of input sensitivity from simulated data, low noise
σ = 10−8 (left), high noise σ = .03 (right).

lines denote the true frequency response while the solid lines denote the identified frequency
responses. It is clear from these figures that identification results based on low noise data
give a much more accurate model. The gains of the difference between true and identified
frequency response for the low noise case is about one percent of the true frequency response
(analogous to one percent multiplicative error for each channel) over all frequency. On the
other hand, for the high noise case, the match at the low frequencies are poor while the
match at the higher frequencies for the diagonal channels are excellent. These appear to
be the result of the input sensitivity which attenuates the lower frequency signals at the
input, causing a poor signal-to-noise ratio and the characteristic loop gain rolloff which
drives the input sensitivity to identity, causing a good signal-to-noise ratio. Clearly, inspite
of a significantly longer data record, using data with a high level of noise (comparable to
measured data), resulted in a significantly less accurate model as compared to resulting
model based on data with a low level of noise.

A.4.3 Identified models of (I − PK)−1P from simulated data

Figure 46 shows the singular values which help determine the orders of a state space model of
the closed loop transfer function across plant based on simulated data containing low (left)
and high (right) noise levels. Again, an upper bound order of 18 is chosen to compute these
singular values. For the low noise case (left figure) 10 states stands out (true states being 9
only) while only 5 states stands out . for the high noise case where the noise floor is high. For
the low noise case, it was found that 7, 8 and 9th order realizations were unstable and so a
6th order stable realization was chosen. On the other hand, a stable 7th order realization was
chosen for the high noise case although it appears that only five states appear to dominate
the response. In general, choosing higher order models often introduced fictitious poles and
zeros and did not improve the model.

Figures 47 and 48 show the true (dash) and identified (solid) frequency responses for the
6th and 7th order models of the closed loop transfer function across plant corresponding to
low and high noise cases respectively. Similar to earlier results for input sensitivity, low noise
data leads to a more accurate model (inspite of using much longer data record for high noise
data case). The multiplicative error is roughly 1 percent error for the low noise case whereas
it is roughly 10 % error for the high noise case, in the frequency range of interest (say .1 to
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Figure 44: Input sensitivity, 20 minutes simulated data: True (dash), Identified 7th order (solid),
low noise σ = 10−8.

10 rad/sec).

A.4.4 Summary of simulation results

The results based on simulated data appears to validate the SMI identification methodology.
Hence we show next the results of applying the identification algorithm to actual measured
data. However, even in the ideal low noise simulated cases, the true order of both closed loop
systems could not be determined exactly although the frequency response of the identified
systems matched quite accurately (< 1%). Of course this basic limitation is of concern to any
identification method because internal variables or states generally do not contribute equally
to the input/output data. The results demonstrate that this generic problem becomes more
acute with higher levels of noise. In addition, the effects of nonlinearity can further blur the
gap between dominant system states and those which appears as noise effects.
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Figure 45: Input sensitivity, 100 minutes simulated data: True (dash), Identified 7th order (solid),
high noise σ = .03.
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Figure 46: Singular values to determine order of closed loop transfer function across plant from
simulated data, low noise σ = 10−8 (left), high noise σ = .03 (right).
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Figure 47: Closed loop transfer function across plant, 20 minutes simulated data: True (dash),
Identified 6th order (solid), low noise σ = 10−8.
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Figure 48: Closed loop transfer function across plant, 100 minutes simulated data: True (dash),
Identified 7th order (solid), high noise σ = .03.
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A.5 Identified models from experimental data

A.5.1 Identified model of (I −KP )−1

Figure 49 shows the time histories of commands, total inputs and the resulting outputs from
a closed loop system identification experiment. Both command signals are designed to be
wideband signals which are heavily weighted for frequencies below 5 Hz. This measurement
data is used to compute the singular values which are used to determine a suitable order
for the input sensitivity state space model. An upper bound order of 18 (same value used
in simulation) is chosen to construct the data matrix which give these singular values. To
increase the number of refinements by increasing the number of samples in the calculation of
these singular values, an overlap of 2048 time points are used to produce 10 samples instead
of 5 resulting in slightly improved results, as shown in Figure 50. The singular values show
no significant gap to indicate a natural order of the system and a 9th order realization is
chosen, guided by the 9th order of the analytical input sensitivity model given earlier.

Figure 51 shows the frequency response of an identified 9th order input sensitivity model.
The frequency response of this model roughly resembles the results from an analytical input
sensitivity model over the frequency range of interest from .1 to 10 rad/sec. The figure
show a typical dilemma in trying to decide with some confidence, which among the two
approximate models is more accurate.

A.5.2 Identifed model of (I − PK)−1P

Figure 52 shows the singular values to determine an order of a state space model of the
closed loop transfer function across plant. An upper bound order of 18 is chosen to compute
these singular values and an 8th order realization is chosen. Again, there are no obvious
gaps in the singular value spread but these singular values drops off more rapidly than the
input sensitivity case. Hence we expect a slightly better fit of the data with 8 states. It is
found that a 9th order realization produced an unstable system and higher order realizations
introduced unrealistic poles and zeros at unpredictable locations.

Figure 53 shows the predicted and an identified 8th order model of the closed loop transfer
function across plant. Note that this identified model only roughly matches the analytical
frequency response. The match appears to be better in the second input, namely, paddle
angle δp, than for the fan motor voltage input Vm. This likely indicates a better analytical
model in the dynamics associated with the paddle angle input, particularly in the prediction
of the altitude z and angle of attack θ.

A.5.3 Prediction error and summary

We adopt the conventional view of an accurate model - one which accurately matches the
measured output due to an arbitrary input, i.e., “the essence of a model is its prediction
aspect” (page 170, [5]). To this end, Figures 54 show comparisons of magnitude spectrums of
measured, analytically predicted, and corresponding prediction errors. The prediction errors
for analytical and identified5 models shown in the figures are l2 norms over the frequency
range .1 to 10 rad/sec normalized by the l2 norms of the corresponding measured signals.
Observe that the prediction errors for the identified model is less than that of the analytical

5The predicted response based on identified model used in the comparisons are actually two separate identified
models obtained independently, input sensitivity and closed loop system across plant. However, this implies that
a corresponding identified open loop plant which satisfies the closed loop equations cannot be determined exactly
because it is overdetermined.
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model but there is still significant discrepencies relative to the measured spectra. Note that
the effects of significant but unknown disturbances and noise have not been included in the
prediction by both models in the above comparisons.

In summary, the identified closed loop model appears to be more accurate than the
analytical model because it better predicts the measured signals. Supported by simulation
results, it was found experimentally that the orders for the identified models for both input
sensitivity and closed loop across plant were unclear because of the obvious presence of
significant noise levels. Overall, the identified models resembles the analytical model but
appears too large when this difference is viewed as an additive model error, for robust
control application.
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Figure 49: Closed loop measurements: command and total inputs (top), outputs (bottom).
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Figure 51: Input sensitivity, 20 mins closed loop experimental data: Identified 9th order (solid),
analytical (dash).
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Figure 53: Closed loop transfer function across plant, 20 minutes experimental data: Identified 8th
order (solid), analytical (dash).
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A.6 Output noise model

We consider a deterministic approach in the construction of an output noise filter from
measured closed loop signals. The methodology is validated using simulated data before
applying it to experimental data. Both low and high levels of simulated output noise are
considered but the same command inputs are used in the simulation as in the experiments.

Figure 23 illustrates the noise identification problem for a closed loop system. The inner
loop controller, K is given (actually the same PD controller is used) and signals, y, u,
and commands r are measured. The signal q represents an unknown equivalent additive
output noise, “equivalent” because all unknown exogenous signals are modeled as noise at
the plant output. This is a modeling assumption which is obviously not physically accurate
but convenient in obtaining a mathematical model of the unknown exogenous signals in the
system. Figure 23b shows the output noise effect as viewed from an open loop perspective.

The goal is to obtain a suitable filter, V , such that q will be the output of V driven by a
normalized discrete-time white noise, ν. For simplicity, each channel of q is assumed to be
independent so that V will be diagonal. To relax this assumption, further modeling effort
is needed (for example the stochastic realization approach as described in [23] and [24]).
As illustrated in Figure 23c, this noise model is the preferred form for subsequent model
validation and structured uncertainty norm determination and subsequently to validate the
performance of an outer loop controller, C. Notice that unlike the open loop case K = 0,
output sensitivity is needed to properly determine the spectrum of q since simply fitting each
closed loop output based on r = 0 could lead to significant errors when the output sensitivity
matrix is not diagonally dominant.

In this study, since we have no input test signal at the plant output to directly estimate
the output sensitivity (so that one can effectively invert it to estimate q), we consider an
approach which directly estimates the spectrum of q from frequency responses of the input
sensitivity and closed loop across plant, which can be directly identified from available signals.
A spectrum of q is obtained by solving the least squares problem corresponding to the
overdetermined set of loop equations for inputs and outputs:[

I

K

]
(I + TyrK)q =

(
y

u

)
−
[
Tyr
Tur

]
r (32)

where Tur := (I − KP )−1, and Tyr := (I − PK)−1P , are previously identified closed loop
transfer functions obtained with independent experiments. Notice that solving for q uniquely
from the output equation using an r = 0 experiment by inverting the output sensitivity
matrix is actually a special case of the above least squares solution since I + TyrK, the
coefficient matrix of q, is actually the output sensitivity matrix. Finally, to obtain V , an
ensamble average of the absolute values of the least squares solution for each signal sample
are computed and then fitted with a stable discrete filter for each channel.

Due to feedback, the resulting closed loop output response due to the command input, r,
and output noise, ν, could be significantly different depending on the particular controller
chosen, as evident from the equations(

y
u

)
=

[
(I − PK)−1P (I − PK)−1

(I −KP )−1 (I −KP )−1K

](
r
ν

)
In particular, the feedback will affect the signal-to-noise ratios which is a key parameter
affecting the degree of success in system identification. We define the following signal-to-
noise ratios at the outputs and inputs:

(s/n)y :=
‖y‖
‖yν‖ =

‖(I − PK)−1Pr + (I − PK)−1ν‖
‖(I − PK)−1ν‖ (33)
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(s/n)u :=
‖u‖
‖uν‖ =

‖(I −KP )−1r + (I −KP )−1Kν‖
‖(I −KP )−1Kν‖ (34)

Notice that for zero mean signals, the above signal-to-noise ratios are simply the ratio of
standard deviations of signals to noise. In principle, given input test signal, r, one can
improve signal-to-noise ratios and hence the outcome of the closed loop system identification
experiment by judiciously choosing the controller, K, such that the test signal response
denoted by the first column partitioned transfer function matrix in equation A.6 is maximized
and the noise response denoted by the second column partitioned transfer function matrix
is minimized, subject to closed loop stability during the test.

Consider the following bounds on the signal-to-ratios:

α
‖r‖
‖ν‖ − 1 ≤ (s/n)y ≤ ᾱ

‖r‖
‖ν‖ + 1 (35)

β
‖r‖
‖ν‖ − 1 ≤ (s/n)u ≤ β̄

‖r‖
‖ν‖ + 1 (36)

where the lower bound factors are

α :=
σ[(I − PK)−1P ]

σ̄[(I − PK)−1]
β :=

σ[(I −KP )−1]

σ̄[(I −KP )−1K]

and the upper bound factors are

ᾱ :=
σ̄[(I − PK)−1P ]

σ[(I − PK)−1]
β̄ :=

σ̄[(I −KP )−1]

σ[(I −KP )−1K]

The factor α (ᾱ) corresponds to the ratio of the minimum (maximum) output signal gain
over maximum (minimum) noise gain at output, i.e., the worst (best) signal to noise ratio at
the output. Similarly, the factor β (β̄) corresponds to the ratio of the minimum (maximum)
input signal gain over maximum (minimum) noise gain at input, i.e., the worst (best) signal
to noise ratio at the input. Figure 55 shows the signal-to-noise ratio lower and upper bounds
α and ᾱ (solid) and β, β̄ (dash), which are based on the analytical plant model and a known
controller. The bounds themselves are only a prediction to the extent that the plant model
is an estimate of the physical system and that all unknown exogenous noise is represented by
an equivalent additive noise model at the plant output. From the figure, notice that at low
frequencies there is a wider range of possible variations in the signal-to-noise ratios and more
so for the output channels. More importantly, note from the upper bounds of the signal-to-
noise ratio predictions that at higher frequencies (say > 3 rad/sec), the best signal-to-noise
ratio is less than 1, a bad sign for any sort of system identification or validation work based
on measured signals at these frequencies.

A.6.1 Noise model from simulated data

To validate the methodology used to realize a discrete filter driven by discrete-time white
noise, simulated low and high output noise (similar to simulated noise used in system iden-
tification study) was added internal to the feedback system consisting of PD controller and
the analytical plant model. We assume that closed loop system identification has been done
separately (see earlier simulation results in system identification) so that the identified in-
put sensitivity and closed loop across plant are used, which do not match the truth model
exactly. For the low noise case, the identified models (from simulated data) closely resemble
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Figure 55: Lower and upper bounds of s/n ratios: α, ᾱ on output (solid) and β, β̄ on input (dash).

the analytical closed loop system whereas in the high noise case, the identified closed loop
models (from simulated data) differs substantially from the analytical model.

Figures 56 show comparisons of identified output noise for low and high noise cases respec-
tively. In all DFT computations, rectangular windows were used and the command input
was zero in the closed loop simulation. At both noise levels, the noise magnitude spectrum
was accurately recovered by this procedure at nearly all frequencies except at the very low
frequencies where the conditioning of the least squares problem increases to 103. Apparently
this is a problem because the identified models were not very accurate at low frequencies
which is amplified by the large condition number.

In summary, the algorithm used for estimating an output spectra appears to work reason-
ably well in simulation and so we apply it to actual measurement data. Using free response
data (r = 0) also improved the recovery of the noise in the closed loop simulation. Appar-
ently this avoids the Fourier Transform approximation error in the estimation of the effect
of command input at the input and output by multiplying the identified frequency response
matrices Tyr and Tur by the DFT of r due to its time-limited signal.

A.6.2 Noise model from experimental data

An independent closed loop experiment with zero command input is carried out to capture
the spectra of unknown exogenous noise in the closed loop system with the PD controller.
A discrete time filter is fitted over the noise spectra for the purpose of model validation,
uncertainty modeling, and designing a second controller over the PD control loop. The
previously identified closed loop models are used in the least squares procedure for obtaining
noise spectra as outlined earlier. Figure 24 shows the identified output noise spectra q (solid)
and the corresponding stable rational filter fit for each output V (dash). To estimate the
sensitivity of the least squares solution in obtaining the noise spectra, the condition number
is also shown by the dash-dot line. Note the following observations:
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• The condition number shows that the calculation in the noise spectra is less reliable
at the lower frequencies for all three outputs. This sensitivity is with respect to both
errors in the model and numerical.

• Since the identified closed loop models used almost certainly is inaccurate, the noise
estimate obtained from the least squares solution of the loop equations will include
both noise and model error, i.e., the estimated noise is expected to be a conservative
estimate. This implies a dependence of the least squares noise on the additive model
uncertainty, and is consistent with the resemblence of the noise spectra to the frequency
response of the identified model.

• The noise spectrum show large disturbances at about 2.5n rad/sec where n = 1, . . . and
most prominent in the first output, dψ/dt and less in the third output, θ, and almost
none in the second channel, z. This frequency matches the rotation rate of the Ducted
fan about the z-axis.

The following signal-to-noise ratios at the output and inputs are obtained:

(s/n)y = (1.429, 1.434, 2.596)

(s/n)u = (3.773, 4.563)

certainly, very noisy signals.
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Figure 56: Identified output noise q from simulated data with low (top) and high (bottom) noise,
4096 point DFT, rectangular window.
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A.7 Uncertainty models from simulated data

Due to its inherent instability (see earlier description of Ducted fan in Appendix), any
substantial experiment on the Ducted fan must be tested in closed loop. For the purposes of
uncertainty bound determination and performance validation, for simplicity we postulate an
uncertainty structure around the closed loop system with a PD controller as described earlier.
Thus, the nominal model consists of the transfer function matrix from command input r to
the closed loop output of the plant y, i.e., (I−PK)−1P . The assumed independent additive
equivalent output noise is amplified by the output sensitivity and filtered/normalized by the
noise filter V .

Again for simplicity, we choose unmodeled dynamics in both diagonal and unstructured
forms of multiplicative uncertainties for all closed loop output channels. For this special case
with no parametric uncertainties, zero disturbance allowance at input, and with only output
multiplicative uncertainties, we obtain the following augmented plant:(

η

y

)
= G




ξ(
ε
ν

)
r


 , where G(P,K, Vn) =

[
0 [0, 0] (I − PK)−1P
I [0, Vn] (I − PK)−1P

]
.

Since [G11, G12] = 0, the ηi(φ, ψ) simplifies to ηi = G13r, a constant for given data. The
problem of finding a smallest model validating unmodeled dynamics then reduces to:

min
φ,ψ,δ1,...,δr,x2

x2

subject to ‖ξi(φ, ψ)‖2 − x2|wi|2‖G13r‖2 ≤ 0, i = 1, . . . , τ

‖φ‖2 ≤ b2o

and since ξi(φ, ψ) is affine and the inequalities represent ordinary norm bounds, a feasible set
if it exists will be convex. For computational efficiency, we rewrite these as an optimization
problem involving a linear cost function subject to a set of Linear Matrix Inequality (LMI)
constraints [11]:

min
z

cT z

subject to

[
Qiz − ‖ξo,i‖2 sym

Siz I

]
> 0, i = 1, . . . , τ[

b2o sym
Mz I

]
> 0

where z := [Re(ψ); Im(ψ); Re(φ); Im(φ);x2] ∈ R2nψ+2nφ+1 and

Qi := [−2Re(ξHo,iΩiA), α2
i ]

Si :=

[[
Re(Ωi) −Im(Ωi)
Im(Ωi) Re(Ωi)

] [
Re(A)
Im(A)

]
, 0

]
M :=

[
02nφ×2nψ I2nφ 02nφ×1

]
A :=

[
0 0 Inφ jInφ
Inψ jInψ 0 0

]
c := [0(2nψ+2nφ); 1]

α2
i := |wi|2‖G13r‖2

The interior-point algorithm found in the MATLAB’s LMI Control Toolbox [20] is used to
solve for the global minimum when feasible.
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A.7.1 Simulated data and case studies

Figure 57 shows the true closed loop system and output noise which is used to generate sim-
ulation data. This system consists of the unstable analytical plant model, PTRUE stabilized
with a PD controller, KPD. The true noise, q, is simulated by a a sequence of zero mean
Gaussian random number with standard deviation of σ = 10−8 for low noise and σ = .03 for
high noise. The command or test input r used in the simulation is chosen to be the same
test input used in the experiments.

PTRUE(I - P    K   )TRUE PD

-1
Σ

(I - P    K   )TRUE PD

-1

q

y r

Figure 57: Truth model used for generating simulation data.

Table 5 shows the different cases considered for simulating uncertainty bound determi-
nation from data. To keep this study to a reasonable length, we consider only two forms of
assumed uncertainty structure, namely, diagonal output multiplicative (denoted by “D” in
Case labels) and unstructured or full output multiplicative (denoted by “F” in Case labels).
These cases address, albeit in a limited sense, the effects of errors in the nominal model,
uncertainty structure, noise allowances, and actual noise level in the data used for model
validation. To enable us to define the correct or an incorrect uncertainty structure in this
simulation study, the errors in the nominal model are simulated by perturbing an analytical
truth model with specfied diagonal output multiplicative filters or with a full block output
multiplicative filters, and by using identified models obtained through a system identification
algorithm based on (low or high) noise corrupted signals.

Cases Sim1-1, Sim2-1, Sim3-1, Sim4-1 are meant to simulate a most ideal situation when
the nominal model is a very accurate representation of the system of interest. Consequently,
a very small model validating unmodeled dynamics is expected (if not zero) and serves as a
necessary check of the model validation methodology.

Cases Sim1-2, Sim2-2, Sim3-2, Sim4-2 are meant to simulate the situation when the nom-
inal model is inaccurate but has a correct uncertainty structure6. This is again an ideal
situation since a correct uncertainty structure in a given application may not exist. Never-
theless, these cases serve as a second necessary check of the model validation methodology
wherein the correct uncertainty level is expected to be recovered.

Cases Sim1-3, Sim2-3, Sim3-3, Sim4-3 are meant to simulate the situation where the cor-
rect uncertainty structure is unstructured. Clearly all cases that assume diagonal uncertainty
structure (Sim*-3-D) will never recover the correct model error. Still, it does not rule out
satisfying model validation conditions which involves only reproducing a particular output
frequency spectra with the aid of an output noise allowance.

In Cases Sim1-4, Sim2-4, Sim3-4, Sim4-4, an identified model obtained from noisy identi-
fication data is used as a nominal model and therefore there is no correct model uncertainty

6A philosophical argument can be made to the effect that in the modeling of physical systems, a particular
uncertainty structure could be viewed as a particular parameterization of the discrepency between a mathematical
model one uses and an imagined “true” model which one tries to contain using an uncertainty model. In other words,
a “correct” uncertainty structure may not have any deep physical significance.
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Case MV Data Nominal Model Uncertainty structure Noise allowance
Sim1-1-D Sim, low noise True Diagonal True peak 2-norm
Sim1-2-D Sim, low noise True + Diagonal error Diagonal True peak 2-norm
Sim1-3-D Sim, low noise True + Full block error Diagonal True peak 2-norm
Sim1-4-D Sim, low noise IDed (low noise data) Diagonal True peak 2-norm
Sim2-1-D Sim, low noise True Diagonal True mean
Sim2-2-D Sim, low noise True + Diagonal error Diagonal True mean
Sim2-3-D Sim, low noise True + Full block error Diagonal True mean
Sim2-4-D Sim, low noise IDed (low noise data) Diagonal True mean
Sim3-1-D Sim, high noise True Diagonal True peak 2-norm
Sim3-2-D Sim, high noise True + Diagonal error Diagonal True peak 2-norm
Sim3-3-D Sim, high noise True + Full block error Diagonal True peak 2-norm
Sim3-4-D Sim, high noise IDed (high noise data) Diagonal True peak 2-norm
Sim4-1-D Sim, high noise True Diagonal .1× True mean
Sim4-2-D Sim, high noise True + Diagonal error Diagonal .1× True mean
Sim4-3-D Sim, high noise True + Full block error Diagonal .1× True mean
Sim4-4-D Sim, high noise IDed (high noise data) Diagonal .1× True mean
Sim1-1-F Sim, low noise True Unstructured True peak 2-norm
Sim1-2-F Sim, low noise True + Diagonal error Unstructured True peak 2-norm
Sim1-3-F Sim, low noise True + Full block error Unstructured True peak 2-norm
Sim1-4-F Sim, low noise IDed (low noise data) Unstructured True peak 2-norm
Sim2-1-F Sim, low noise True Unstructured True mean
Sim2-2-F Sim, low noise True + Diagonal error Unstructured True mean
Sim2-3-F Sim, low noise True + Full block error Unstructured True mean
Sim2-4-F Sim, low noise IDed (low noise data) Unstructured True mean
Sim3-1-F Sim, high noise True Unstructured True peak 2-norm
Sim3-2-F Sim, high noise True + Diagonal error Unstructured True peak 2-norm
Sim3-3-F Sim, high noise True + Full block error Unstructured True peak 2-norm
Sim3-4-F Sim, high noise IDed (high noise data) Unstructured True peak 2-norm
Sim4-1-F Sim, high noise True Unstructured .1× True mean
Sim4-2-F Sim, high noise True + Diagonal error Unstructured .1× True mean
Sim4-3-F Sim, high noise True + Full block error Unstructured .1× True mean
Sim4-4-F Sim, high noise IDed (high noise data) Unstructured .1× True mean

Table 5: Simulated cases: effects of nominal model, uncertainty structure, and noise allowance.
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structure. This ambiguity is whats expected in a typical application. This contrasts sharply
to the other cases where a correct uncertainty structure exists, albeit simulated, and the
assumed uncertainty structure is either correct or incorrect. Still, analogous to the previous
case, the existence of a model validating set cannot be ruled out, even if a “correct” model
uncertainty structure is unknown. However, the identified model from simulated data closely
matches the true model.

A.7.2 Perfect nominal model

Figure 58 shows diagonal uncertainty bounds for cases Sim1-1-D,. . ., Sim4-1-D which assumes
perfect nominal model. This is a reference case where the recovered uncertainty bounds
should be very small or ideally zero. With a low level of noise in the data, cases Sim1-1-D
and Sim2-1-D show a very small level of unmodeled dynamics (circle and square dash lines).
This very small level of unmodeled dynamics obtained is independent of the noise allowance
levels assumed, since the circle and square dash lines overlap. However, notice that even
with a perfect nominal model and the data contains only a small level of noise, the model
validating unmodeled dynamics is not exactly zero. This residual is due to the fact that the
output error used in model validation definition assumes

ey(z) := Z[y(t)] − Tyr(z)Z[r(t)] = 0

under the ideal conditions: perfect model Tyr(z), no noise or disturbance effects in y(t) and
r, and signals are either infinite time length or is periodic. However, since all measured time
signals are of finite length even under near ideal conditions where noise effects are negligible,
the following output error results

ey(z) := Z[y(t)h(t)] − Tyr(z)Z[r(t)h(t)] = Z[y(t)] ∗ Z[h(t)] − Tyr(z) (Z[r(t)] ∗ Z[h(t)]) �= 0

where Z[·] denotes the z-transform operation, ∗ denotes the frequency convolution operation
and h(t) denotes the chosen time window (refer earlier section for a more detail discussion on
the assumptions on signals and systems). Figure 59 illustrates this residual error for a perfect
model with a Hanning window over a 12000 point (600 seconds) sample, which is exactly
half the total length of experimental data. In this application, this residual DFT error is
considered an acceptably small level of fictitious model validating unmodeled dynamics.

Figure 58 also shows what happens to the uncertainty bounds when there is a high level
of noise in the data used for model validation. Using a high noise allowance level equal to the
peak true, Case Sim3-1-D shows a very small uncertainty bound (diamond dot line), which
is acceptable. Apparently, the remaining noise allowance is sufficient to compensate for the
DFT errors. However, if only a small level of noise allowance (10% of true mean noise) is
used when there is a high level of noise in the data, as in case Sim4-1-D, a large erronous
level of uncertainty bound results (triangle dot line), mostly to account for the large output
noise.

Assuming an unstructured uncertainty with a perfect nominal model, the computed un-
structured uncertainty bounds obtained are similarly very small as shown by the circle and
square dotted lines in Figure 60. The erroneous effects of using a low level of noise allowance
when there is a large level of noise in the data is similar (triangle dot line).

A.7.3 Nominal model with correct uncertainty structure

Figure 61 shows the diagonal uncertainty bounds for cases Sim1-2-D, Sim2-2-D, Sim3-2-
D, Sim4-2-D, whose nominal models are chosen as the analytical truth model perturbed
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diagonally at the output as follows

P (z)nom = (I + ∆(z))Ptrue(z) (37)

where

∆(z) := W (z)∆diag

W (z) := diag

(
.2, .1736

(z + .1303)

(z − .5095)
, .5208

(z − .7776)

(z + .1584)

)
∆diag := I3×3, σ̄(∆diag) = 1

This means that a correct uncertainty structure and level exists. The solid lines in Figure
61 shows the correct model error levels, a constant in the first channel and first order low
and high pass filters for the second and third channels, respectively. The results show that
with low noise levels in the data as in Sim1-2-D and Sim2-2-D, the correct diagonal model
error levels are recovered reasonably accurately as indicated by circle and square dash lines
in Figure 61. At most frequencies, the predicted uncertainty bound is slightly less than the
correct levels (except at the very low frequencies where the data record length becomes a
limiting factor) which do not appear to be due to the noise allowance levels (since the circle
and square dash lines overlap). Figure 61 also shows that if a high level of noise is present
in the data for model validation, as in cases Sim3-2-D and Sim4-2-D, apriori knowledge of
the correct uncertainty structure does not help to recover the correct uncertainty bounds
(compare line with diamond and triange dash lines).

As a second example of a situation where a correct uncertainty structure is known, Fig-
ure 62 shows the computed unstructured uncertainty bounds for a nominal model with a
full block output model error and assuming correctly, an unstructured uncertainty at the
output. For the cases with low noise in the data, Sim1-3-F and Sim2-3-F, the uncertainty
bounds (circle and square lines) roughly recovers the maximum singular value of the correct
unstructured model error (solid line). However, with large levels of noise in the data as in
cases Sim3-3-F and Sim4-3-F, erroneous levels of uncertainty bounds result (diamond and
triangle lines) independent of the level of noise allowance assumed.

A.7.4 Nominal model with incorrect uncertainty structure

Figure 63 shows the diagonal uncertainty bounds for cases Sim1-3-D, Sim2-3-D, Sim3-3-D,
and Sim4-3-D, whose nominal model is the truth model perturbed at the output as follows

P (z)nom = (I + ∆(z))Ptrue(z)

where

∆(z) := W (z)∆full

∆full :=


 −0.0896 − 0.2473i −0.0178 + 0.5314i 0.4692 − 0.2975i

−0.1352 − 0.1399i −0.3587 + 0.1471i −0.1014 − 0.2886i
0.0674 + 0.4169i −0.1886 − 0.2629i −0.1121 + 0.2525i


 , σ̄(∆full) = 1

and W (z) is a diagonal filter denoting the correct uncertainty radius for each output. This
is an example of a situation where the assumed uncertainty structure is incorrect and is
incapable of recovering the correct uncertainty bounds. Figure 63 shows the uncertainty
bounds obtained for all four cases which do not resemble the maximum singular value of the
correct unstructured output model error indicated by the solid line. Not surprisingly, due to
the nonuniqueness of model validating uncertainties, all four cases satisfied model validating
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conditions in spite of the incorrect uncertainty structure assumed. Finally, note that for
the two cases with low level of noise in the data (Sim1-3-D and Sim2-3-D), the uncertainty
bounds are very insensitive to noise allowance (circle lines overlap square lines).

As an example of a situation where the assumed uncertainty structure is incorrect because
it is overparameterized, Figure 64 show the results of Sim1-2-F,..., Sim4-2-F, where the
nominal model is diagonally perturbed as given by equation 37, which is identical to cases
Sim1-2-D,..., Sim4-2-D. For the case with low levels of noise in the data (Sim1-2-F and Sim2-
2-F), the maximum singular value of the unstructured uncertainty (circle and square dash
lines in Figure 64) roughly matches the maximum singular value of the correct diagonal
model error (solid line). Of course this successful recovery is likely due to the fact that
the assumed unstructured (and overparameterized) uncertainty is capable of generating the
correct diagonal uncertainty bounds. Again, with high levels of noise in the data (Sim3-2-F
and Sim3-2-F), erroneous uncertainty bounds result (diamond and triangle lines in Figure
64).

A.7.5 Identified nominal models

In this set of cases, identified models are used as nominal models. Cases (Sim1-4-D, Sim2-4-
D) and (Sim1-4-F, Sim2-4-F) uses nominal models obtained from system identification based
on signals which contain low levels of noise, hence these are more accurate identified models.
The complementary cases (Sim3-4-D, Sim4-4-D) and (Sim3-4-F, Sim4-4-F) uses inaccurate
identified nominal model due to the use of system identification data containing a high level
of noise (compare model errors in Figures 47 and 48).

Given a 3 by 2 truth model, Ptrue, and an identified nominal model Pid, a correct additive
uncertainty can be defined and computed unambiguously, but a multiplicative output uncer-
tainty can only be defined by solving for ∆mult from the following underdetermined matrix
equation:

(I3×3 + ∆)Pid = Ptrue

Notice that there is no physical preference for a least squares ∆ corresponding to an output
multiplicative uncertainty (let alone correct uncertainty structure). This is an example where
we are only certain that the two transfer matrices are different and the correct uncertainty
structure is therefore indeterminate.

Figure 65 shows the unstructured output multiplicative uncertainty bounds (circle and
square dash lines) for cases Sim1-4-F and Sim2-4-F which uses a low level of noise in data.
Figure 66 shows the diagonal output multiplicative uncertainty bounds (circle and square
dash lines) for cases Sim1-4-D and Sim2-4-D which uses a low level of noise in data. Both
diagonal and unstructured output multiplicative uncertainty bounds compares surprisingly
well to the maximum singular value of the least squares output multiplicative uncertainty
as shown by solid lines in Figures 65 and 66. In spite of the unknown correct uncertainty
structure for the identified models, all four cases satisfied model validation conditions and
produced reasonable uncertainty levels.

Figures 67 and 68 show the uncertainty bounds using inaccurate identified nominal mod-
els and data with high levels of noise. Clearly the uncertainty bounds (diamond and triangle
dotted lines) do not resemble the maximum singular value of the least squares output mul-
tiplicative uncertainty as shown by solid lines. Again, the predicted uncertainty bounds are
sensitive to the assumed noise allowance because of the high levels of noise in data.
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A.7.6 Summary

Since an infinity of other uncertainty structures, parameters, noise allowance levels, and
actual noise in data are possible but cannot all be considered in any simulation, the results
are in no way conclusive. Nevertheless, the results suggest the following:

For all following cases with a low level of noise in data, all uncertainty bounds were
insensitive to the noise allowances used. With accurate nominal models, the uncertainty
structure was not important because the resulting uncertainty bounds required were as ex-
pected small. Namely, for the perfect nominal case, assuming diagonal uncertainty structure
resulted in very small levels (circle and square lines in Figure 58) while an unstructured un-
certainty structure assumption also resulted in very small levels of maximum singular value
uncertainty as expected (circle and square lines in Figure 60). For the accurately identified
model case, assuming unstructured uncertainty gave matching small levels of maximum sin-
gular value uncertainty levels (circle and square lines in Figure 65) while assuming diagonal
uncertainty structure resulted in matching small levels of diagonal uncertainty levels (circle
and square lines in Figure 66) compared to maximum singular value of the least squares un-
structured output multiplicative uncertainty (solid line in Figure 66). These fictitious small
levels of uncertainty bounds consists mostly of DFT errors and were mitigated by judiciously
windowing reasonably long samples.

For less accurate nominal models with correct a priori assumptions on the uncertainty
structure, the correct uncertainty levels are recovered for both diagonal (circle and square
lines compared to solid line in Figure 61) and unstructured cases (circle and square lines
compared to solid line in Figure 62). The underestimated uncertainty levels at most fre-
quencies are due to the fact that the particular sample data did not reflect the worst case
directional response for this multivariable system.

For less accurate nominal models with incorrect a priori assumptions on the uncertainty
structure, the uncertainty bounds obtained were generally unpredictable. This unpredictabil-
ity is of course not totally surprising since the incorrect uncertainty structure will not allow
the recovery of the correct uncertainty bounds. For example, in the nominal model case with
unstructured error at output, assuming diagonal uncertainty led to unrecognizable bounds
(circle and square lines compared to solid line in Figure 63). However, notice from the fig-
ure that at each frequency, the maximum uncertainty component (maximum singular value
of a diagonal matrix) apparently is greater than the maximum singular value of the cor-
rect full uncertainty matrix. As a second example with incorrect a priori assumptions on
the uncertainty structure, consider the overparameterized uncertainty case where the correct
uncertainty is diagonal but the assumed uncertainty model is assumed unstructured. The
maximum singular value of the uncertainty bounds of the assumed unstructured uncertainty
(circle and square lines in Figure 64) compares reasonably well, albeit an underestimation, to
the correct maximum uncertainty component (maximum singular value of the true diagonal
marix) indicated by solid line. This somewhat successful recovery of the correct uncertainty
bound 7 was made possible because the true diagonal uncertainty structure is a subset of
the corresponding unstructured uncertainty. Interestingly, note from the two previous ex-
amples that the maximum simgular value of the unstructured uncertainty was consistently
smaller than that of the diagonal uncertainties, which suggests that assuming less structure
in the uncertainty, and therefore intuitively more conservative, may not necessarily lead to
a more conservative uncertainty model, by reducing uncertainty values with more uncertain
variables.

For black-box type nominal models typical of identified models, a correct uncertainty
structure is indeterminate, given only the identified noiminal model and possibly an imag-
ined true model. Due to this indeterminacy, any uncertainy bound comparisons are suspect.

7although apples and oranges are compared since a diagonal matrix is compared to a full matrix
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Nevertheless for this study, we computed and compared an equivalent output multiplicative
error based on a minimum norm least squares solution to the output multiplicative uncer-
tainty bound from data. Surprisingly, both the unstructured uncertainty bound in (circle
and square lines in Figure 65) and diagonal structure uncertainty bounds (circle and square
lines in Figure 66), match reasonably well with the maximum singular values of the least
squares equivalent output multiplicative uncertainties (solid lines in Figure 65 and 66). In
summary, incorrect or indeterminate uncertainty structure did not preclude satisfying model
validation conditions but sometimes resulted in unpredictable uncertainty norm bounds.

For all cases with a high level of noise in data, the uncertainty bounds were unreliable and
sensitive to the assumed levels of noise allowance. In the selection of noise allowance levels, a
larger level is preferred over smaller levels (than true noise level in data) to avoid erroneous
uncertainty bounds, unless the noise in the data is known to be extremely low. Although
it is intuitively clear that any attempt to validate a model will be less reliable with higher
noise levels, as shown here, the results have been further subject to a limiting feature of the
model validation theory investigated which do not distinguish noise and model error effects.
In fact, the validation approach is to use noise variables as a given allowance to minimize
the model error uncertainty bounds necessary to satisfy model validation conditons. Hence
further research is recommended whereby the noise signals in the data can be discriminated
from model error effects in satisfying model validation conditions so that noise allowance
will not compensate for model errors and vice versa.
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Figure 58: Diagonal uncertainty bounds for perfect nominal model: Sim1-1-D,..., Sim4-1-D.
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Figure 61: Diagonal uncertainty bounds for nominal model with diagonal error: Sim1-2-D,..., Sim4-
2-D.
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Figure 62: Unstructured uncertainty bound based on nominal model with full block error, Sim1-3-
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Figure 63: Diagonal uncertainty bounds for full matrix error in nominal model: Sim1-3,..., Sim4-3.
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Figure 64: Unstructured uncertainty bound based on nominal model with diagonal block error,
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Figure 65: Unstructured uncertainty bounds for identified nominal model under low noise: Sim1-
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Figure 66: Diagonal uncertainty bounds for identified nominal model under low noise: Sim1-4-D
and Sim2-4-D.
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Figure 67: Unstructured uncertainty bounds for identified nominal model under high noise: Sim3-
4-F and Sim4-4-F.
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Figure 68: Diagonal uncertainty bounds for identified nominal model under high noise: Sim3-4-D
and Sim4-4-D.
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